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Abstract

We are interested in the development of image-based
person detection algorithms for wearable computing using
commodity smartphones. We focus on the use of smart-
phones as a wearable device because it is a practical means
of augmenting human sensing for applications such as navi-
gation for the blind or assisting social interaction. We iden-
tify two unique features of developing a vision-based person
detector for body-worn smartphones: (1) the detector must
take into account the strong bias in the size of people in
the images taken with a wearable device and (2) the detec-
tor must consider the low image quality due to dim light-
ing and rapid ego-motion which leads to motion blur. In
order to account for the unique distribution over the vis-
ibility of body parts when using a wearable camera, we
propose a part-based person detector specialized for chest-
mounted smartphones. We perform extensive ablative anal-
ysis on the usefulness of part information, providing several
insights regarding the design of the optimal person detector
across different application domains. To account for the fre-
quent occurrence of motion blur in our target domain, we
introduce a data augmentation technique to generate syn-
thetic motion-blurred images during training. In addition
to addressing the aforementioned features, the final detec-
tor must also run in real-time using only smartphone re-
sources. We leverage recent progress in deep neural net-
works for mobile devices and show that our proposed per-
son detector, SmartPartNet, obtains performance similar to
state-of-the-art pedestrian detection networks, while being
3× smaller and 5× faster.

1. Introduction
The widespread use of smartphones provides ample op-

portunities for scalable deployment of vision-based assis-
tive technologies. On-device computer vision can be used to

(a) Images from a body-worn smartphone

(b) Images from PASCAL dataset [1].

Figure 1. Our paper develops an efficient person detection algo-
rithm that can run on a smartphone while being specifically suited
to images captured from a body-worn camera perspective. We pro-
pose to leverage the appearance distribution of people body parts
in our specific application domain, and contrast it with general
person detection settings on the PASCAL dataset.

support situational awareness in people who are impaired or
elderly. For instance, a smartphone can be worn and used to
provide real-time information about the surrounding scene,
such as navigational cues or social cues. In this manner, it
can enhance mobility independence and overall quality of
life. For such applications, this study focuses on detecting
an important and useful component of the environment –
people.

Detecting people in images is crucial for a variety of ap-
plication domains in computer vision and robotics. State-
of-the-art generic object detection techniques [2, 3] are
typically evaluated on various pedestrian detection bench-
marks [4]. Many of the existing person detection bench-
marks have been developed for generic person detection
(e.g. PASCAL [5, 1]), surveillance [6], and driving [7, 8,
9, 10]. Depending on the target task, the appearance distri-
bution of people in any given dataset can be greatly skewed.



For example, general object detection datasets will tend to
have a uniform distribution over the size of people in im-
ages. In surveillance datasets, the camera angle tends to be
oblique and the size of person is typically very small rela-
tive to the size of the image. Pedestrians imaged for driving
applications tend to be distributed near the horizon line and
to the left or right side of the image.

Our work identifies several domain specific issues when
the dataset is captured in first-person settings (Fig. 1). In
particular, we show that the visibility of people and body
parts are relatively consistent in size (roughly half the height
of the image height) for images taken with a body-worn
camera. We can take advantage of that consistency to learn
part detectors specialized for body-worn cameras. Our pro-
posed SmartPartNet, takes advantage of the natural body
part appearance statistics of egocentric images and uses a
specific combination of body-part detectors for optimal de-
tection performance. We also observe high levels of mo-
tion blur due to a combination of rapid ego-motion and
low brightness imaging conditions in indoor environments.
SmartPartNet utilizes a data augmentation technique us-
ing motion blur to make our person detector more robust to
motion blur. In addition to addressing these domain spe-
cific issues, we also design our person detection algorithm
to run on a mobile device. We leverage recent progress in
deep neural networks for mobile devices and show that our
proposed person detector, SmartPartNet, obtains perfor-
mance similar to state-of-the-art pedestrian detection net-
works, while being smaller and faster.

2. Related Work

Object Detection. General object detection is one of the
most active research areas in computer vision. A survey
of object detection techniques is beyond the scope of this
paper, but some notable approaches are R-CNN [11], Fast
R-CNN [2], and Faster R-CNN [3], all of which employ a
region proposal mechanism as a form of attention before the
final classification and localization. Other approaches, such
as YOLO [12] and SSD [13], achieve fast run-times by not
employing a region proposal mechanism. The most recent
version of YOLO [14] combines multiple insights from the
aforementioned techniques, including a fully convolutional
network and anchor boxes for predicting bounding boxes.
The baseline detector in this work is based on tiny-YOLO
(YOLO with a smaller network) suitable for real-time pro-
cessing on a smartphone. Tiny-YOLO is implemented with
CoreML on an iPhone.

People Detection. Object detectors are often applied to
the task of people detection due to a variety of applica-
tion domains involving observation of human behavior. Ef-
ficient pedestrian detectors have often employed boosted
channel features [15, 16, 17, 18]. Several recent meth-

ods [19, 20, 21] with good performance apply decision
forests on top of convolutional features. In recent studies
[22, 23, 24], such techniques are employed as region pro-
posals for deep learning techniques. Scene specific detec-
tion schemes have also shown promise [25, 26, 27]. Zhang
et al. [21] showed that introducing higher resolution feature
maps and a bootstrapping strategy to Faster R-CNN result in
a state-of-the-art detector. Tian et al. [24] partitions pedes-
trian boxes into sub-areas to handle occlusion. Unlike [24],
our part-based detector does not train independent part de-
tection models, but instead learn part complementarity in
a holistic multi-task training framework. Furthermore, we
employ part annotations, not commonly done in pedestrian
detection training schemes.

Mobile Object Detection. Our aim in this work is to study
challenges in person detection on a mobile device. Model
efficiency and size play a critical role for on-device appli-
cations. Recent work has focused on reducing the parame-
ters of networks. Iandola et al. [28] introduced SqueezeNet,
achieving AlexNet-level accuracy on ImageNet with fewer
parameters by using smaller filters. Howard et al. [29] pro-
posed MobileNets which employ depth-wise separable con-
volution rather than using traditional convolution for reduc-
ing the size of the network.

Part-based Object Detection. Part-based models have
been widely researched [30, 23, 31, 32, 33, 34] to improve
object detection performance. Recent part-based techniques
close to our work are Faceness-Net [35] and DeepParts [24].
These approaches stand out in robustness to detection under
partial visibility. Faceness-Net [35] detects facial parts with
a single detector per part, later combining the responses
to produce face detection boxes. In contrast, we study a
more efficient architecture for part-based detection which
requires jointly training a single detection model for all the
parts.

3. Cross-Dataset Visibility Statistics

In order to study the challenges specific to people detec-
tion from a body-worn smartphone camera, we compare the
visibility statistics of two pedestrian detection datasets. In
particular, we focus on the visibility of body parts across
the PASCAL-Part dataset [1] and a Egocentric People Parts
dataset created for this work. Fig. 1 illustrates some of
the qualitative differences between the people seen from an
egocentric video and a general object/person dataset. Next,
we will quantitatively contrast and compare various statis-
tics across the datasets to motivate later design decisions for
developing our proposed pedestrian detector for body-worn
smartphones.

PASCAL People Parts Dataset. To compute the visibility
statistics of people in generic object detection dataset, we
use a subset of the PASCAL-Parts Dataset [1] that contains



people. For the people category there are 24 part segmen-
tation masks. The dataset provides head, upper body parts
(torso, arms, hands), and lower body parts (legs and feet). In
addition to combining parts to create upper body and lower
body boxes, we join the facial parts (nose, eyes, eyebrows,
mouth) in order to create a face box.

Egocentric People Parts (EPP) Dataset. Since existing
publicly available datasets for people or pedestrian detec-
tion were not captured from a body mounted perspective
and also do not contain part annotations, we created our
own dataset for comparison and evaluation. The video data
was collected in a variety of everyday social setting, includ-
ing walking in hallways, talking and interacting with others
while standing or seated, meeting room discussions, eating
with a group, and shopping. The overall data captured com-
prises of about 2 hours of video data, out of which short
and diverse clips were selected for a total of 19,980 frames.
Head, face, torso, arms+hands, and lower body parts were
annotated for each person. Video was captured at 30 frames
per second (fps), and every 30th frame was annotated.

3.1. Comparative Statistics

Here we quantify the difference in the size of people
(and their parts) between PASCAL-Parts dataset and EPP
dataset. To visualize this difference, we plot histograms
over the size of people (and their parts) relative to the image
height (Fig. 2) as well as part visibility statistics (Supple-
mentary). Since the EPP dataset is taken with a wearable
camera during close social interactions, we would expect
the size of people in the video to be larger than people in
the PASCAL dataset.

The histogram over people and part sizes for the two
datasets are shown in Fig. 2. The x-axis represents the
relative height of the part and the y-axis represents the nor-
malized histogram count. The blue and red bars represent
the height statistics for the PASCAL part and EPP dataset,
respectively. For each body part, we observe that there is
a significant difference in the height distribution of parts.
Contrary to our expectation, we observe from Fig. 2 per-
son height (top left graph) that the size of a person the EPP
dataset is concentrated around 60% of the image height,
whereas for the PASCAL part dataset, the size of people
in images are close to uniformly distributed. For other body
parts like the torso and arms, we notice that the size body
parts are more peaked at certain heights, whereas the cor-
responding PASCAL parts has a more diffused distribution.
A peaked distribution over the appearance of certain parts
may indicate that it may be easier to learn those appearance
models, since there is less variance in the appearance that
must be modeled. We will validate this hypothesis empiri-
cally in later experiments. Furthermore, the differences in
distributions leads us to explore cross-data generalization
and domain-specific training benefits.
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Figure 2. Histogram of the ratio of part heights and image height
in the two datasets, PASCAL (red) and our EPP (blue). The x
axis is the ratio of part height and image height. The y axis is the
normalized value in percentage.

4. Part-Informed Person Detection

The observation that body part appearance statistics tend
to have a specific distribution for the wearable camera ap-
plication domain motivates us to train detectors which can
efficiently leverage this phenomenon in order to gain bet-
ter detection performance. Specifically, we are interested
in analyzing whether the distribution differences result in
significant impact on cross-dataset training and testing of
part-based approaches. We study two techniques for part-
informed person detection, one with a multi-task train-
ing framework and another with part boxes fusion in test-
time. The proposed train and test-time modifications will be
shown to significantly improve detection performance with-
out sacrificing run-time speed.

Part-based Training. Common part-based detectors are
highly inefficient due to training individual, part-specific
end-to-end models [35, 24], which later need to be post-



processed and combined with additional modules. Such ap-
proaches are not feasible for on-device deployment, and do
not fully utilize complementary feature sharing across the
parts.

The efficiency requirement motivated us to consider a
different approach, where part supervision is added through
modification of the label space. In this framework, instead
of single person class the detector output is multi-class,
where body parts are treated as different classes (Fig. 3).
We note that this modification results in a negligible impact
on run-time speed or model size. By providing body part
labels, the network can then automatically update the fea-
tures in order to produce useful shared representations for
the person detection task and leverage complmentary infor-
mation among the part cues. Although similar in nature to
multi-task learning, where features can holistically integrate
across tasks, it is a different form of part-based detection
compared to other state-of-the-art approaches [35, 24] as
it does not require a post-processing combination module
or significantly changing the architecture. Interestingly, al-
though parts are often claimed to emerge when training a
deep network for a supervised high level task, we find that
adding parts to the prediction label space result in a signif-
icant impact on the detection performance of the original
person class. To reiterate, we perform most of the analy-
sis on the person detection task which is our overarching
goal, but study the benefits of adding part detection tasks
to the network in training time. Related to this approach is
the practice of adding auxiliary label targets [36, 37], which
is known to help in regularizing training. Unlike the stud-
ies [36, 37], our cross-dataset experiments will demonstrate
this approach to be highly sensitive to the appearance distri-
bution of parts in the experiments. In the experiments, we
train the model with an initial learning rate of 1e−3, and
reduce by a factor of 10 every 30 epochs for a total of 200
epochs.

Test-Time Part Combination Module. YOLO achieves
fast run-time performance partly due to an efficient grid-
based approach for producing the final detection boxes, as
shown in Fig. 4. We find that the task of regressing a full
person detection box out of a single cell (YOLO employs a
13× 13 grid in the feature space) is difficult, often resulting
in poorly localized detection boxes. We therefore propose
an efficient part combination module during test time which
improves both precision and recall of the person boxes at a
negligible computational cost. Furthermore, the combina-
tion module is useful in analyzing whether the part-based
training approach fully learns to leverage part-based cues
for detecting the person class boxes.

Given part detection boxes, we perform a configura-
tion check that results in either refinement of an existing
person box or instantiation of a new person box. For-
mally, the part-informed model generates full person detec-
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Figure 3. Test-time differences between (a) the baseline person
detector and (b) our proposed multi-task part-based approach with
part combination module (see Section 4).
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Figure 4. Test-time part combination module. In YOLO, the input
image is divided to S x S grid (b). The grid cell containing the
center of the target object is responsible to detecting the target
object. (c) Result of each part detector. (d) The final person box.
Since different parts occur at different cells, combining part boxes
often provides better localized boxes.

tion boxes, {bi}ni=1, and part detection boxes {pi}mi=1. A
box is composed of the image coordinates, score, and type
[x, y, w, h, s, t]. As each full person box bi was regressed
from a single cell in the grid, it often struggles to bound the
person entirely, especially at body extremities. On the other
hand, the part detection boxes occur at different cells (Fig.
4), and can therefore aid in localization. We restrict our part
boxes by a minimum threshold on the confidence score (0.2)
in order to avoid degrading the person boxes with false pos-
itives and only processing a small set of part detections for
the combination module. Given an existing person box bi
which overlaps (area of Intersection Over Union-IoU) parts
{pk}lk=1, we determine whether the parts result in an up-
right person (determined by heuristically checking the rela-
tive y-coordinate of the parts, e.g. head is above upper body,
upper body above lower body, etc.) and consequently re-
place bi box with b̄i = ∪lk=1pk and score with maxk=1:l pk.
If any of the remaining part boxes produce plausible con-
figurations, determined by comparing upright possibilities
against configuration cluster centroids from the training set
(produced by k-means) with the Euclidean distance, a new
person box is instantiated with a score of maxk=1:l pk. The
combination module includes a final non-maximum sup-



pression operation. We note that this approach is intended to
reflect our application domain while not adding additional
computational overhead. The intuitive heuristics allow us
to avoid an expensive search over part combinations as done
in general detection settings [38, 34] while still significantly
improving detection performance.

5. Data Augmentation with Blur Effect
In addition to studying efficient part-based detection

approaches for our smartphone settings, we introduce a
data augmentation technique to generate synthetic motion-
blurred images during training. The augmentation allows
for domain-based increase in detection robustness, without
increasing the computational run-time cost. We observed
object detectors to be highly sensitive to even small levels
of motion blur, yet smartphone-captured video often con-
tains blurry images due to the camera motion and long ex-
posure time. To handle this issue, we train the network with
synthesized motion-blurred images.

Each training image is pre-processed with motion filter
h. The coefficients for the motion filter h are the length
l, which defines severeness, and angle θ, which determines
the direction of motion blur. A line segment L with the de-
sired length l and angle θ is constructed and centered at the
center coefficient of h. For each coefficient location h(i, j),
Dnearest(i, j) is the nearest distance between that location
(i, j) and the line segment L,

h(i, j) =
max(1−Dnearest(i, j), 0)∑
i,j max(1−Dnearest(i, j), 0)

In training time, we apply the motion filter with a fixed
length and a randomly selected angle. We compared three
motion blur training sets with three different lengths (100,
150, and 200) and one Gaussian blur training set to the orig-
inal training set. Fig. 5 visualizes these varying blur levels.
We apply motion blur augmentation to our entire training
set, regardless of whether an image has originally contained
blur. The augmentation will be shown to result in both lo-
calization improvement of instances with motion blur and
reduction in missed detections due to blur.

6. Experimental Analysis
We begin our analysis by comparing the PASCAL and

the EPP dataset in terms of part detection performance,
multi-part complementarity, and generalization capability
from PASCAL to EPP.

6.1. Part-based Training Results

Impact on PASCAL Person Class Detection. Fig. 15
depicts the results of different part-informed models trained

(a) (b) (c) (d) (e)

Figure 5. Motion blurring data augmentation significantly impacts
detection performance. (a) Original (b) Light motion blur (c) Mod-
erate motion blur (d) Heavy motion blur (e) Gaussian blur.
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Figure 6. Detection results for the person class of models trained
with different part output on the PASCAL training set. Testing is
performed on PASCAL and EPP dataset captured in mobile set-
tings. The y-axis shows average precision (AP). Each bar repre-
sents the results of a model learned with the following part combi-
nations, p = person, h = head, f = face, t = torso, a = arm, b = body,
u = upper body, l = lower body, all = all parts.

on PASCAL and tested on PASCAL and EPP. The re-
sults are compared against the single-class person detec-
tor (shown by a line in both plots), and are only shown
on the person class. The plots reveal several interesting in-
sights regarding the design of the optimal person detector
across different datasets. First we note that the off-the-shelf
implementation of tiny-YOLO [14] trained on the person
class alone performs poorly on our PASCAL people only
validation split. Addition of parts results in significant in-
crease in detection performance, from 18.9 to 36.2 AP when
adding torso, upper-body, and body parts. Nonetheless, not
all parts are shown to be beneficial, and a combination of
all parts shows significant deterioration in detection perfor-
mance. Simply put, some parts help while others hurt. This
phenomenon is not well studied in related literature. In prin-
ciple, the sharing of features in the multi-task formulation
can holistically improve performance across the tasks. Prac-



tically, we find this not to be the case. For instance, holistic
object detection approaches may be more sensitive to de-
terioration in detection performance due to non-useful or
poorly recognized parts. Furthermore, they may not gener-
alize well to instances when people are occluded or across
datasets with different part visibility distributions. On the
other hand, part detectors in related studies [35, 24] often
involve independent detection modules, which could bet-
ter handle cases of non informative part cues. Nonetheless,
[35] briefly reports deterioration of performance when over-
partitioning the label space into parts and sub-parts (for fa-
cial part detection). At the same time, adding auxiliary part
tasks is shown to have a large impact on the learned features
for the person detection class. While often papers make
claims regarding the emergence of parts in deep ConvNets,
our study affirms that such strong supervision of most parts
is shown to help performance.

Generalization to EPP. Next, we analyze the role of
part-informed training on cross-dataset generalization. The
analysis on the EPP dataset (Fig. 15(b)) demonstrates how
the difference in part height and visibility distribution re-
sults in improvement only due to some selected part combi-
nations. For instance, the head class is shown to highly ben-
efit generalization across the datasets. The face class on the
other hand does not, as our dataset contains many instances
of people facing away from the camera. The model requires
cues from the face, head, upper-body, and lower-body in or-
der to best generalize to the new domain. This experiment
also affirms our hypothesis that our domain captured in the
EPP dataset has very different characteristics from the gen-
eral person detection settings in PASCAL.

Correlation with Individual Part Detection Perfor-
mance. In an attempt to study this interesting phenomenon
deeper, we train and test single-class part detectors on both
datasets, as shown in Fig. 7. The goal of this experiment is
to determine whether the detection quality of independent
parts play a key role in their success. Results are shown in
Fig. 15 both on PASCAL and EPP. On PASCAL, the most
successful parts with two part combinations are the body
and torso, followed by upper body and head. Face is the
least useful, followed by lower body and arm. Fig. 7 depicts
the correlation between individual part detection results and
part combination results. We can conclude that the com-
bination of the best performing classes also results in the
a high performing part-informed person detector. Hence,
performance of part-informed training models is influenced
both by the ability of the model to capture part-specific
appearance cues, as well as the appearance distribution of
parts.

Best Parts Combination for Body-Worn Smartphone
Settings. On the EPP dataset, Fig. 15(b) depicts head,
lower body, upper body, and torso to be the most success-
ful classes when added to the person class detection tasks
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Figure 7. Precision-recall curves of single part detection models
on (a) the PASCAL dataset and (b) our EPP dataset. Average
precision (AP) is shown in the legend. Note that each model is
evaluated on their corresponding part class in the test set.

in a two part combination. Yet, when inspecting individual
part detection performance in 7(b), the top performing class
is actually body (a part composed by combining the upper
and lower body, without the head). Furthermore, the pre-
vious best combination of person+torso+upper+body does
not generalize well at all. Finally, some of the classes which
perform poorly are showing to holistically combine with
those which perform well, resulting in the best performing
combination of person+head+face+upper+lower (63.0 AP
compared to the 50.1 AP baseline). Example results of this
model are visualized in Fig. 8. A combination of all parts
overfits to the training data so badly that it produces the
worst performing combination on EPP. We conclude that
part-informed person detectors are highly sensitive to the
dataset distribution and could result in poor generalization,
even when individual part detectors produce reliable results.
Furthermore, single part classes over with poor detection
performance can holistically combine with other parts to
improve generalization across datasets to new application



(a) (b)

Figure 8. (a) Detection results of the single-class person detector baseline (in blue) and the part-informed (pfhul, in pink) detector. The
ground truth boxes are shown in green. (b) Localization results improve due to blur augmentation. Detection results with/without the
motion blur-based augmentation are shown in blue/purple, respectively.
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Figure 9. Precision-recall curves with different kinds of blur-based
augmentation on the EPP dataset. Motion-blur1, Motion-blur2,
and Motion-blur3, refer to increasing levels of motion-blur amount
of low, moderate, and high, respectively.

domains. In practice, the results reflect the variations in the
types of people (i.e. visibility patterns) in each dataset. The
supplementary contains a finer-grained breakdown of detec-
tion performance for different visibility patterns in EPP.

6.2. Motion Blur-based Data Augmentation

Person detection deteriorates even under slight motion
blur artifacts. We consider this challenge as another oppor-
tunity to specialize our detector to the application domain,
and analyze whether appropriate data augmentation can al-
leviate the issue. In this experiment, the model is fine-tuned
on the EPP dataset with varying levels of blur. Starting from
the PASCAL-trained model, we continue by fine-tuning the
model for another 100 epochs. As shown in Fig. 9, fine-
tuning benefits precision at both high and low recall. The
maximum length of the motion blur is varied to be 100, 150,
and 200 pixels, where we observe performance degradation.
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Figure 10. SmartPartNet leverages a final step of part detections
combination for improving localization and recovering missed
pedestrians.

While fine-tuning alone results in a 5.8 AP improvement,
motion-blur data augmentation further improves by 2.7 AP
points. Gaussian blur on the other hand is not shown to sig-
nificantly impact the performance as its charchteristics are
quite different from motion blur.

6.3. SmartPartNet

Our final SmartPartNet detector is composed of the
combined contributions described in Sections 4 and 5. In
addition to part-informed training and motion blur handling,
we analyze a final part combination module in test time.
The goal of this experiment is to find out whether the multi-
task part-informed training fully leverages relationships be-
tween parts, as well as further improve detection perfor-
mance with neligble addition in computation. As shown in
Fig. 10, this module results in an additional improvement of
3.2 AP points. Therefore, the multi-task formulation, while
beneficial, is shown to not be able to fully capture reasoning
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Figure 11. Comparison between the baseline (tiny-YOLO) and
SmartPartNet on the EPP dataset for different overlap require-
ments for a true positive detection (0.7 overlap threshold requires
better localization).

among parts. This final important step results in our com-
plete SmartPartNet performance at 74.3 AP on the EPP
dataset. As shown in Fig. 11, the improvement is con-
sistent across varying overlap thresholds (IoU localization
requirements) for ground truth boxes. Fig. 12 visualizes
some example scenarios in which the test-time part com-
bination module improves detection performance. Table 1
performs an overall summary of the different components
of SmartPartNet, compared against both the YOLO and
tiny-YOLO baselines. Our method performs nearly as well
as the full YOLO model, which currently achieves state-of-
the-art results on a variety of detection tasks and datasets,
including PASCAL and COCO [12]. Run-time is not sig-
nificantly impacted by the proposed components of Smart-
PartNet, and the part-informed training results in a minor
increase in model size due to the addition of the part classes
to the last layer. In order to ensure generalization of the
proposed contributions, we also employ the MOT [39, 40]
challenge dataset, with detection curves shown in the sup-
plementary. Overall, our proposed approach demonstrates
consistent improvement in detection performance. For in-
stance, on the ETH-Bahnhof part of the dataset we achieve
62.3 AP with our SmartPartNet detector compared to the
48.1 AP with the tiny-YOLO baseline.

7. Conclusion

Real-time person detection on a smartphone can be used
for several assistive application domains. This paper deals
with challenges specific to person detection from a body-
worn, egocentric perspective. A part-informed training pro-
cedure resulted in significant detection performance gains
in a state-of-the-art detector. The ablative analysis also re-
vealed insights into issues with training generalizable part-
based person detectors. A part combination module in test

Method Speed (fps) Accuracy (AP)
YOLO 40 (GPU) 79.7
tiny-YOLO >200 (GPU) 50.9
tiny-YOLO + parts >200 (GPU) 63.0
tiny-YOLO 15 (phone GPU) 50.9
tiny-YOLO + parts 15 (phone GPU) 63.0
tiny-YOLO + parts + ft 15 (phone GPU) 68.8
tiny-YOLO + parts + ft + blur 15 (phone GPU) 71.4
SmartPartNet 15 (phone GPU) 74.3

Table 1. Comparison of performance and run-time on a Titan X
and a smartphone GPU with different components of the proposed
approach; parts, fine-tuning (ft), motion blur handling, and test-
time parts combination which is shown as the final SmartPartNet
results. Each component is shown to significantly improve perfor-
mance with negligible impact on the run-time or network size.

Figure 12. Results with the test-time parts combinations module.
The baseline person, head, upper body, and lower body detection
boxes are shown in red, blue, cyan, and green, respectively.

time and a motion blur-based data augmentation provided
further gains.

In the future, SmartPartNet will be improved to han-
dle further domain-specific challenges. Further detection
performance gains can be achieved using online on-device
training, specializing to certain people and scenarios which
may repeat on a daily basis. The parts detector can also
be used to perform a fine-grained analysis of the surround-
ing scene useful for assistive technologies (e.g. people ges-
tures and expressions), although the addition of further tasks
in training time needs to be studied carefully. Finally, we
would like to study the usefulness of the output provided
by SmartPartNet in real-world assistive settings, e.g. as a
navigational aid to visually impaired people.

8. Acknowledgement

This work was sponsored in part by JST CREST grant
(JPMJCR14E1), NSF NRI grant (1637927), and DNDO ER
grant (2017-DN-077-ER0001).



References
[1] X. Chen, R. Mottaghi, X. Liu, S. Fidler, R. Urtasun, and

A. Yuille, “Detect what you can: Detecting and represent-
ing objects using holistic models and body parts,” in IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2014.

[2] R. Girshick, “Fast r-cnn,” in The IEEE International Confer-
ence on Computer Vision (ICCV), December 2015.

[3] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: To-
wards real-time object detection with region proposal net-
works,” in Advances in Neural Information Processing Sys-
tems, pp. 91–99, 2015.

[4] R. Benenson, M. Omran, J. Hosang, e. L. Schiele, Bernt”,
M. M. Bronstein, and C. Rother, “Ten years of pedestrian
detection, what have we learned?,” in European Conference
on Computer Vision, 2014.

[5] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I.
Williams, J. Winn, and A. Zisserman, “The pascal visual ob-
ject classes challenge: A retrospective,” International Jour-
nal of Computer Vision, vol. 111, pp. 98–136, Jan. 2015.

[6] K. Vignesh, G. Yadav, and A. Sethi, “Abnormal event detec-
tion on BMTT-PETS 2017 surveillance challenge,” in IEEE
Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), pp. 2161–2168, July 2017.

[7] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for au-
tonomous driving? the KITTI vision benchmark suite,” in
Conference on Computer Vision and Pattern Recognition
(CVPR), 2012.

[8] P. Dollar, C. Wojek, B. Schiele, and P. Perona, “Pedes-
trian detection: An evaluation of the state of the art,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 34, pp. 743–761, April 2012.

[9] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,
R. Benenson, U. Franke, S. Roth, and B. Schiele, “The
cityscapes dataset for semantic urban scene understanding,”
in Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016.

[10] S. Zhang, R. Benenson, and B. Schiele, “Cityper-
sons: A diverse dataset for pedestrian detection,” CoRR,
vol. abs/1702.05693, 2017.

[11] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich fea-
ture hierarchies for accurate object detection and semantic
segmentation,” in The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2014.

[12] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You
only look once: Unified, real-time object detection,” in The
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2016.

[13] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-
Y. Fu, and A. C. Berg, “Ssd: Single shot multibox detec-
tor,” in European Conference on Computer Vision, pp. 21–
37, Springer, 2016.

[14] J. Redmon and A. Farhadi, “YOLO9000: better, faster,
stronger,” in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), July 2017.

[15] J. W. Davis and M. A. Keck, “A two-stage template approach
to person detection in thermal imagery,” in WACV, 2005.

[16] P. Dollar, Z. Tu, and S. Belongie, “Integral channel features,”
in In British Machine Vision Conference (BMVC), 2009.

[17] P. Dollar, R. Appel, and P. Perona, “Fast feature pyra- mids
for object detection,” in IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence (TPAMI), 2014.

[18] W. Nam, P. Dollar, and J. H. Han, “Local decorrelation for
improved pedestrian detection,” in Neural Information Pro-
cessing Systems (NIPS), 2014.

[19] Z. Cai, M. Saberian, and N. Vasconcelos, “Learning
complexity-aware cascades for deep pedestrian detection,” in
Proceedings of the IEEE International Conference on Com-
puter Vision, pp. 3361–3369, 2015.

[20] B. Yang, J. Yan, Z. Lei, and S. Z. Li, “Convolutional channel
features,” in Proceedings of the IEEE international confer-
ence on computer vision, pp. 82–90, 2015.

[21] L. Zhang, L. Lin, X. Liang, and K. He, “Is faster r-cnn doing
well for pedestrian detection?,” in European Conference on
Computer Vision, pp. 443–457, Springer, 2016.

[22] J. Hosang, M. Omran, R. Benenson, and B. Schiele, “Taking
a deeper look at pedestrians,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 4073–4082, 2015.

[23] Y. Tian, P. Luo, X. Wang, and X. Tang, “Pedestrian detection
aided by deep learning semantic tasks,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 5079–5087, 2015.

[24] Y. Tian, P. Luo, X. Wang, and X. Tang, “Deep learning strong
parts for pedestrian detection,” in IEEE International Con-
ference on Computer Vision (ICCV), pp. 1904–1912, Dec
2015.

[25] Y. Mao and Z. Yin, “Training a scene-specific pedestrian de-
tector using tracklets,” in WACV, 2015.

[26] A. Setia and A. Mittal, “Co-operative pedestrians group
tracking in crowded scenes using an mst approach,” in
WACV, 2015.

[27] X. Zeng, W. Ouyang, M. Wang, and X. Wang, “Deep learn-
ing of scene-specific classifier for pedestrian detection,” in
European Conference on Computer Vision, pp. 472–487,
Springer, 2014.



[28] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J.
Dally, and K. Keutzer, “Squeezenet: Alexnet-level accuracy
with 50x fewer parameters and <1mb model size,” CoRR,
vol. abs/1602.07360, 2016.

[29] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Effi-
cient convolutional neural networks for mobile vision appli-
cations,” CoRR, vol. abs/1704.04861, 2017.

[30] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-
manan, “Object detection with discriminatively trained part-
based models,” IEEE transactions on pattern analysis and
machine intelligence, vol. 32, no. 9, pp. 1627–1645, 2010.

[31] A. Mohan, C. Papageorgiou, and T. Poggio, “Example-based
object detection in images by components,” IEEE transac-
tions on pattern analysis and machine intelligence, vol. 23,
no. 4, pp. 349–361, 2001.

[32] K. Mikolajczyk, C. Schmid, and A. Zisserman, “Human de-
tection based on a probabilistic assembly of robust part de-
tectors,” European Conference on Computer Vision, pp. 69–
82, 2004.

[33] M. Enzweiler, A. Eigenstetter, B. Schiele, and D. M. Gavrila,
“Multi-cue pedestrian classification with partial occlusion
handling,” in Proceedings of the IEEE conference on Com-
puter Vision and Pattern Recognition, pp. 990–997, IEEE,
2010.

[34] R. Girshick, F. Iandola, T. Darrell, and J. Malik, “De-
formable part models are convolutional neural networks,” in
Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition, pp. 437–446, 2015.

[35] S. Yang, P. Luo, C.-C. Loy, and X. Tang, “From facial parts
responses to face detection: A deep learning approach,” in
Proceedings of the IEEE International Conference on Com-
puter Vision, pp. 3676–3684, 2015.

[36] Z. C. Lipton, D. C. Kale, C. Elkan, and R. Wetzell, “Learning
to diagnose with LSTM recurrent neural networks,” ICLR,
2016.

[37] R. Caruana, S. Baluja, and T. Mitchell, “Using the future to
”sort out” the present: Rankprop and multitask learning for
medical risk evaluation,” in Advances in neural information
processing systems, 1996.

[38] P. Felzenszwalb, D. McAllester, and D. Ramanan, “A dis-
criminatively trained, multiscale, deformable part model,” in
Computer Vision and Pattern Recognition, 2008.

[39] A. Ess, B. Leibe, and L. V. Gool, “Depth and appearance
for mobile scene analysis,” in International Conference on
Computer Vision (ICCV), 2007.
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9. Supplementary

9.1. Validation of SmartPartNet’s Performance on
Two Additional Datasets

The main paper studied the PASCAL and EPP datasets
in detail, but mentioned consistent improvement on two ad-
ditional datasets from the MOT challenge [40, 41]. Fig-
ure 13 shows the full performance curves on the ETH-
Bahnhof [39] dataset, and Figure 14 on the MOT16-11
dataset, which also provides a Fast R-CNN baseline [2].
The technical report in [41] contains all the details regard-
ing the dataset and the training and testing parameters of
the baseline Fast R-CNN. Overall, our proposed approach
demonstrates consistent improvement in detection perfor-
mance over the original tiny-YOLO baseline for pedestrian
detection.
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Figure 13. Person detection results of tiny-yolo baseline and our
SmartPartNet method on the ETH-Bahnhof dataset.
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Figure 14. Person detection results of tiny-yolo baseline, Fast
RCNN baseline and our SmartPartNet method on the MOT16-
11 dataset.



9.2. Supplementary to Figure 6

The idea behind the initial experiments in Section 6 of
the paper is to study the benefits of the multi-task part-
based training on detection performance on PASCAL, as
well as study its role on cross-data generalization, specifi-
cally to the EPP dataset captured in mobile settings. Figure
15 shows the detection precision recall curves for different
part combinations, visualized more clearly in a bar plot in
Figure 6 of the main paper.
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Figure 15. Precision-recall curves of models with different parts
output on pascal part dataset and our mobile dataset. AP = average
precision. p = person. h = head. f = face. t = torso. a = arm. b =
body. u = upper body. l = lower body. all = all parts. The values
in the legend are average precisions.

9.3. Detection in Different Part Visibility Settings -
Supplementary to Section 6

In order to quantify the detection performance improve-
ment on different types of visibility patterns of parts, Figure

16 compares the single-class person detector baseline with
the best part-informed detector on the EPP dataset. The fig-
ure isolates the improvement in performance due to detect-
ing people with upper body and head visible as well as full
visibility. These instances of people allow the combination
model to apply the learned relationships between the parts.
No improvement is shown for people with no head visible
occurring at truncated instances (e.g. social interactions).
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Figure 16. Precision-recall curves on subsets of people in EPP with
different part visibility patterns. We compare the baseline single-
class person detector, p, and the best part-informed detector pfhul
(abbreviated part notation; person, face, head, upper body, and
lower body). In parenthesis is the type of part visibility pattern.
(all) - entire dataset, (visible) - only people with all parts visible,
(nolower) - people without lower body visible, and (nohead) - peo-
ple without head visible. We can observe how performance due to
part-based training does not occur on instances where the head is
not visible, such as during close social interaction settings.

9.4. Cross-Dataset Visibility Statistics Comparison
- Supplementary to Section 3

The visibility distribution of parts is another factor con-
tributing to the cross-dataset performance changes. Our
dataset is shown to contain more pedestrians without a head
and one arm (due to close social settings), as shown in Fig-
ure 17.
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Figure 17. Comparing part visibility distribution of PASCAL and
the EPP dataset. Whole are instances with all parts visible, upper
are instances without lower body visible, no-head are without head
visible, and one-arm are cases with only one arm visible. Two-
arms and no-arms cases are similarly defined.


