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Abstract— We investigate a new strategy for improving local-
ization accuracy of detected vehicles using a deep convolutional
neural network. Specifically, we implement an iterative bound-
ing box refinement on top of a state-of-the-art object detector.
The bounding box refinement is achieved by iteratively pooling
features from previous object location predictions. On KITTI
vehicle detection benchmark, we achieve up to 6% improvement
in average precision over the baseline results. Furthermore,
the proposed refinement framework is computationally light,
allowing for object detection at high run-time speeds. Our
method runs at ∼0.22 seconds per image on images of size
1242× 375, making it one of the fastest detectors reported on
the KITTI object detection benchmark.

I. INTRODUCTION

Accurate object localization is an important challenge
when developing vision-based systems for intelligent vehi-
cles and robots [1]. Essential components for autonomous
driving, such as accurate 3D localization of surround objects,
surround agent behavior analysis, navigation and planning,
and other higher-level vision tasks [2] are all impacted by
the quality of the initial object localization. This work studies
improving a deep convolution neural network (CNN) object
detector by adding a module which iteratively refines object
box proposals. The proposed refinement module is light
weight, and results in both fast and high-quality detection
of objects. We refer to this novel strategy as RefineNet, and
analyze its behavior and convergence properties.

In recent years, techniques reliant on deep CNNs have
been successfully applied to various computer vision prob-
lems such as image classification [3], [4], [5], object de-
tection [6], [7], [8], [9], semantic segmentation [10], [11],
[12], and many more, thanks to its ability to learn robust,
hierarchical, generic features, applicable to varying tasks.

Region-based CNN [6] (R-CNN) has been proposed for
object detection, where a CNN classification network is used
to independently classify object proposals. This approach
is computationally very expensive since the network has to
perform a forward pass on each proposal. Fast R-CNN [7]
solves this problem by performing a single pass on the input
image and sharing the convolution channel features among
proposals. Compared to R-CNN, Fast R-CNN improves the
computational efficiency of by an order of magnitude with
negligible change in performance. Often, in situations where
the object (such as vehicles) appear with large variations
in scale, Fast R-CNN [7] is repeatedly applied at multiple
scales. The common issue with Fast R-CNN is that its per-
formance relys on the quality region proposals. To solve this

Fig. 1. We present a new strategy (termed RefineNet) to improve vehicle
detection and localization accuracy at a marginal increase in computation
cost. In the image, orange, yellow and green color represents bounding
boxes at iterations 1, 2 and 3 respectively.

problem, Faster R-CNN [8] implements a region proposal
network within the CNN framework. This allows for an
end-to-end object detection with a single pass through the
CNN network along with improving computation efficiency.
Hence, Faster R-CNN is our starting point baseline. Despite
it’s success, these approaches have certain drawbacks. First,
Faster R-CNN doesn’t handle small objects very well. Cur-
rently, this is solved by significantly up-sampling the input
image. Together with the use of deep networks, this adds
significant computation cost limiting their use in intelligent
vehicles. Second, the region of interest (RoI) pooling layer
pools features in accordance with proposal boxes locations
which are often poorly localized. These features may not
accurately represent the underlying object’s characteristics.
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Fig. 2. RefineNet: A pretrained network which is fine-tuned on a object detection dataset is used to extract convolutional feature map (C5). Using these
features, proposal boxes are generated with the Faster R-CNN framework [8]. Next, the operation is repeated with C5 features and the proposal boxes, so
that a refined set of detection boxes D1 are generated. This constitutes the first iteration in RefineNet. Successive iterations i involves refining the detection
boxes Di by using detections from previous iterations, Di�1, as proposal boxes for constructing the RoI pooled features.

In this work, we attempt to address the aforementioned
issues by proposing a new strategy for iterative bounding
box refinement (see Fig. 1), called RefineNet. The idea is to
let the RoI pooling layer pool features from regions closer
to the object ground truth by making use of the regressed
bounding boxes from the previous iteration. We also perform
a quantitative analysis on the impact of various parameters
on speed and accuracy and gain useful insights regarding the
effect of some parameters on the performance of the detector.

We evaluate our method on KITTI object detection
benchmark [13] and show that comparable accuracy can
be achieved with RefineNet using a smaller network (ZF
Net [14]) as opposed to using Faster R-CNN with a bigger
network (VGG16 [4]). Also, RefineNet with ZF runs roughly
9× faster than Faster R-CNN with VGG16 making it one of
the fastest detectors on the benchmark with little compromise
to detection performance.

II. REFINENET

In this section, we introduce our strategy to iteratively
refine bounding box locations to improve localization accu-
racy. Fig. 2 provides the overall architecture of RefineNet. It
is built on top of Faster R-CNN [8] object detector. Before
we go into the details of RefineNet, we briefly cover relevant
parts of Fast R-CNN and Faster R-CNN.

A. Fast R-CNN

Fast R-CNN [7] improves upon R-CNN [6] by approx-
imating features using an region of interest (RoI) pooling
layer. Let I be an input image of spatial dimensions H×W .
First, convolutional feature maps are extracted over the input

image. With ZF [14] network, this is the output correspond-
ing to conv5 layer and is a matrix (C5) of dimensions
bH
16c × bW

16 c × 256. Here 16 represents the factor by which
the input image gets scaled after passing through the conv5
layer. This also holds for the AlexNet [3] and VGG16 [4]
network architectures. From C5, features corresponding to
each proposal box is extracted by pooling features from the
corresponding spatial location and re-sampling them to a
fixed size (6 × 6 × 256 for ZF network). Bounding box
regression and class score are modeled by mapping the
pooled features using 3 cascaded fully connected layers.

B. Faster R-CNN

Faster R-CNN [8] is built upon two modules namely the
region proposal network (RPN) and Fast R-CNN [7]. The
entire system is an single pass end-to-end unified network
for object detection. The RPN layer replaces the proposal
boxes input that was fed into the Fast R-CNN framework.

The region proposal network takes an image as input
and outputs proposal boxes along with objectness score.
This process is modeled as a regression problem over the
convolutional feature map that is extracted from the input
image (C5 is used to share computational cost with Fast R-
CNN). To generate region proposals, a small convolutional
filter of size 3 × 3 spatial window is applied over the
input features followed by two 1 × 1 convolutional filters
for generating proposal boxes and objectness scores at each
spatial location. At each spatial location, multiple proposals
can be generated using anchor boxes. These anchor boxes
can be setup at multiple scales and aspect ratio and serves as
reference for regression i.e. if the kth anchor box is defined
as ak = {xk, yk, wk, hk} then the regression targets would
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be {δxk, δyk, δwk, δhk} where δxk = xk − xg and so on.
Here the subscript g corresponds to the closest ground truth
box. This formulation allows proposal generation at multiple
scales and aspect ratio without constructing feature pyramid.

C. RefineNet Training

Training the RefineNet is similar to training the Faster
R-CNN network. It follows the 4 step alternate training.

1) Train the RPN network initialized with model pre-
trained on ImageNet [15] dataset.

2) Train the Fast R-CNN network (from random initial-
ization) using proposals generated in step 1.

3) Fix convolution layers and fine-tune RPN network
from step 2.

4) Fix convolution layers and fine-tune Fast R-CNN net-
work from step 3.

For training the RPN network, each anchor box is assigned
a class label and regression target at each location. Labels
are assigned in the following order. (i) If an anchor box has
an intersection over union (IoU) overlap with a don’t care
box greater than 0.6, then the anchor box is ignored. (ii) If
an anchor box has an IoU overlap greater than 0.5, then the
anchor box is considered foreground. (iii) For all the ground
truth boxes that are not assigned any anchor box, the anchor
box is with highest IoU is used. (iv) All the anchor boxes
that have IoU overlap with all the ground truth boxes less
than 0.3 are considered as background.

The loss function used for training the RefineNet follows
from Faster R-CNN where a multi-task loss function is de-
fined to learn both classification and regression (two sibling
output layers).

D. RefineNet Testing

Testing the RefineNet is an iterative process. In the first
iteration, detection boxes Di are generated using the Faster
R-CNN framework. We store the already computed C5

convolutional feature map in memory. Next, each successive
iterations i use the C5 and detection boxes from previous
iterations, Di�1, as proposal boxes input in the RoI pooling
stage of Fast R-CNN. At every iteration, the detection boxes
achieves higher overlap with the ground truth boxes. There-
fore, the features pooled in the successive iterations will
better represent the underlying object class and its location.
This allows for recursively improving the classification score
and also the localization accuracy.

III. IMPLEMENTATION DETAILS

We train and test region proposal and object detection
network on images at multiple scales. This has been the trend
in CNN based object detection on KITTI object detection
benchmark [13]. For example, in [16], input image is up-
sampled by 4× and in [17] by 3×. This could be due
the following reasons. (i) Convolution layers of CNN has
stride greater than 1. (ii) Max-pooling layers reduce spatial
dimensions. (iii) Because, the CNN network is pre-trained
at a fixed scale of 224 × 224, it is unable to generate rich
features for objects at different scales. We train and test at

TABLE I
DISTRIBUTION OF VEHICLES IN KITTI DATASET INTO DIFFERENT

DIFFICULTY SETTING BASED ON HEIGHT, OCCLUSION AND TRUNCATION.

Difficulty Height Occlusion Truncation
Easy 40 Fully Visible 15%

Moderate 25 Partially Occluded 30%
Hard 25 Difficult to See 50%

different combinations of scales such that the shortest side
has s pixels.

During training, each ground truth is assigned to the
closest scale. During testing, only the top K2 proposals are
selected after passing the top K1 proposals through a non
maximal suppression (NMS) unit (IoU threshold: 0.7). Also,
detection occurs at each scale independently which are later
concatenated and passed through a NMS unit (IoU threshold:
0.3) to remove duplicate detection boxes.

The following parameters are used for the 4-step alternate
training using stochastic gradient descent with momentum. (i
& iii) Batch size: 256. Total iterations: 80,000. Base learning
rate: 0.001. Step size: 60,000. Learning rate scale factor: 0.1.
Momentum: 0.9. Weight decay: 0.0001. (ii & iv) Batch size:
128. Total iterations: 40,000. Rest of the parameters remain
unchanged.

IV. EXPERIMENTS

We evaluate our method on KITTI object detection
benchmark [13] for a car detection task. The dataset is
split into training and validation as suggested in [18]. The
training and validation set have 3682 and 3799 images
respectively. We augment the training set by including
horizontally flipped version of the images. KITTI object
detection benchmark evaluates the detector performance
at 3 different difficulty settings differentiated based on
constraints in Table I. We train and test on moderate
difficult settings. Hard ground truth boxes are considered
as don’t care boxes during both training and testing. We
evaluate area under the Precision-Recall curve (AUC) as
a measure of detector’s performance. A detection box is
considered as true positive if any ground truth has an
IoU overlap greater than oth, which is fixed as 0.7 in the
experiments.

We train a RefineNet model (M1) using the ZF network
on the KITTI training split. Training and testing is carried
out at scales s = {375, 750} which is {1×, 2×} the image
size respectively. We use the default set of 9 anchors at 3
different scales (8,16 and 32) and 3 different aspect ratios
(1:1, 1:2 and 2:1). For iteration 1, we use the K1 = 6000
and K2 = 300 boxes (defined in Section III) into the Fast
R-CNN network. In Table II, we report AUC as a function
of the number of refinement iterations with an overlap
of 0.7. At this strict overlap requirement, we demonstrate
the ability of the refinement step to improve localization
accuracy with just 1 or 2 iterations. With N = 3, M1

achieves maximum AUC of 81.58%. At K2 = 200, runtime
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TABLE II
AUC AT OVERLAP 0.7 VS. THE NUMBER OF REFINEMENT ITERATIONS

(N ). METRICS GENERATED ON KITTI VALIDATION SET USING THE

REFINENET MODEL M1 .

N=1 N=2 N=3 N=4 N=5
AUC 78.78 81.26 81.58 81.15 80.73

Runtime1 (sec) 0.20 0.24 0.29 0.34 0.38

reduces from 0.29 seconds to 0.22 seconds with less than
0.4% decrease in AUC. As a final experiment, we study the
effect of number of anchor boxes. Specifically, we train a
RefineNet model (M2) with just one anchor box (a square
with sides of length 67 pixels and centered at 0,0). Again,
training and testing is carried out at scales s = {375, 750}.
Guided by our previous experiment, we set K1 = 1000. At
K2 = 200, runtime reduces to 0.20 seconds with less than
0.9% decrease in AUC. Although, the decrease in runtime
is not significant, the improvement in AUC from 74.54%
to 80.69% is more than 6%. By decreasing the number
of anchor boxes from 9 in M1 to just 1 in M2 we have
reduced the number of model parameters. Intuitively, this
results in a 4% decrease in AUC (78.79% vs 74.54%) at
the first iteration but, RefineNet was able to improve the
quality of detection in just 2 additional iterations.

Evaluation on KITTI object detection benchmark: We
train a RefineNet model with parameters taken from M1

and train it on the entire training set. This model achieves
79.17% on the KITTI benchmark [13]. In Table III, we
compare AUC at different different difficulty settings.
SubCNN [16] and 3DOP [17] share maximum AUC
at different difficulty settings. However, this comes at
significant increase in computation cost. SubCNN employs
VGG16 [3] on upsampled input images of up to 4x whereas
3DOP employs VGG16 [4] with upsampled input images
by 3.5x. SDP addresses the issue of detecting small objects
by using cascaded classifier at different conv layers of
VGG16. It would be interesting to incorporate this idea
with RefineNet, while using the ZF Net [14] to study the
impact on detector accuracy and run-time.

Results visualization: Fig. 3 demonstrates example im-
ages with the iterations of RefineNet visualized in different
colors. RefineNet is shown to improve box localization on a
variety of challenging cases, including small objects, partial
truncation, and partial occlusion. We plot detection results
at a low threshold for the analysis, leading to some false
positives, but note that these are generally with a lower score
than the true positives visualized. Fig. 4 demonstrates some
challenging cases for RefineNet, mostly due to heavy occlu-
sion. For instance, Fig. 4 depicts a case where RefineNet
improves over the baseline but still does not fully localize
an occluded vehicle (middle image). Another example is the
many parked vehicles at close proximity, leading to a less

1Using Nvidia GTX Titan X

TABLE III
AUC ACHIEVED BY STATE-OF-THE-ART DETECTORS ON KITTI OBJECT

DETECTION BENCHMARK AT MODERATE DIFFICULTY SETTINGS.
ASTERISK (*) - METHOD EMPLOYS THE VGG16 NETWORK.

Detector
AUC

Runtime(sec)
Moderate Easy Hard

SubCNN* [16] 89.04 90.81 79.27 2
SDP* [19] 88.85 90.14 78.38 0.40

3DOP* [17] 88.64 93.04 79.10 3
Faster R-CNN* [8] 81.84 86.71 71.12 2

RefineNet (ours) 79.17 89.88 66.38 0.22
Regionlets [20] 76.45 84.75 59.70 1

SubCat [21] 75.46 84.14 59.71 0.7
3DVP [18] 75.77 87.46 65.38 40

OC-DPM [22] 65.95 74.94 53.86 10

localized box after the iterative refinement steps.

V. CONCLUDING REMARKS

In this paper, we introduce a new strategy called RefineNet
to improve localization accuracy of vehicle detection and
report a gain of upto 6% in AUC. Our method relies on using
already computed features making the detector very fast.
Specifically, RefineNet runs in about 0.22 seconds per image.
On KITTI object detection benchmark, it achieve 79.19%
on moderate difficulty settings. It is the fastest detector
that achieves upwards of 70% AUC. On easy difficulty
settings, it achieves 90% AUC which is close to state-of-
the-art result. The proposed approach was shown to greatly
improve detection performance using the ZF architecture.
Performance improvement using deeper networks, such as
VGG, will be studied in the future.
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