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Abstract— Over the last decade, there have been many studies
that focus on modeling driver behavior, and in particular
detecting and overcoming driver distraction in an effort to
reduce accidents caused by driver negligence. Such studies
assume that the entire onus of avoiding accidents are on the
driver alone. In this study, we adopt a different stance and study
the behavior of pedestrians instead. In particular, we focus on
detecting pedestrians who are engaged in secondary activities
involving their cellphones and similar hand-held multimedia
devices from a purely vision-based standpoint. To achieve
this objective, we propose a pipeline incorporating articulated
human pose estimation, and the use gradient based image
features to detect the presence/absence of a device in either
hand of a pedestrian. Information from different streams and
their dependencies on one another are encoded by a belief
network. This network is then used to predict a probability
score suggesting the involvement of a subject with his/her
device.
Index Terms—Pedestrian activity recognition, human pose es-
timation, panoramic surround behavior analysis, highly au-
tonomous vehicles, deep learning, computer vision, panoramic
camera arrays.

I. INTRODUCTION

With the explosion of hand-held device usage globally,
smart phones have made their way into most hands. This
trend is expected to continue as devices get cheaper and find
more utility in our day to day lives. As of 2011, there were
more phones than people in the USA, and internationally,
the number of mobile phone subscriptions is an estimated
5.9 billion. Though such devices are extremely useful and
even indispensable for many, it is this very dependence that
is a major cause of pedestrian distraction, and possible injury.
From here on-wards, we shall make use of the term cellphone
as a placeholder for any hand-held multimedia device that a
pedestrian may interact with.

Distracted walking, like distracted driving, is likely to
increase in parallel with the penetration of electronic de-
vices into the consumer market. Although driver distraction
has received more attention since the turn of the century,
distraction among pedestrians is a relatively nascent area
of research. This is surprising given that pedestrians are in
fact prone to acting less cautiously when distracted. Fur-
thermore, a recent report by the Governors Highway Safety
Association (GHSA) reveals a disturbing trend - between
the mid-1970s and early 2000s, pedestrian deaths steadily
declined, eventually dipping to around 11 percent of all
motor vehicle fatalities. But since 2009, pedestrian fatalities
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have actually increased by 15 percent, climbing to 4,735 in
2013. Meanwhile, the percentage of pedestrians killed while
using cell phones has risen, from less than 1 percent in 2004
to more than 3.5 percent in 2010, according to [1]. Also, the
number of pedestrians injured while on their cells has more
than doubled since 2005, the study shows.

The severity of this phenomenon is further reflected by
the number of studies conducted over the last few years,
each of which arrive at similar conclusions. In a recent study
conducted by Thompson et al. [2], they conclude that nearly
one-third (29.8%) of all pedestrians performed a distracting
activity while crossing, with text messaging associated with
the highest risk among different technological and social
factors. Meanwhile, Nasar et al. [1] found that mobile-phone
related injuries among pedestrians increased relative to total
pedestrian injuries, and paralleled the increase in injuries for
drivers, and in 2010 exceeded those for drivers. The study
by Byington et al. [3] confirms this by a virtual street based
simulation, stating that - while distracted, participants waited
longer to cross the street, missed more safe opportunities to
cross, took longer to initiate crossing when a safe gap was
available, looked left and right less often, spent more time
looking away from the road, and were more likely to be hit or
almost hit by an oncoming vehicle. Moreover, it is noted that
the demographic of individuals between ages 18-29 is more
susceptible to exhibit such behavior. For a detailed report on
the global nature of the pedestrian safety problem and the
inadequacy of current systems in ensuring it, we refer the
reader to [4].

It is also interesting to note that as the emphasis of
automobile manufacturers gradually shifts towards more au-
tomated vehicles, so must the emphasis placed on preventing
pedestrian distraction related injuries. In such scenarios, the
intelligent vehicle must be able to gauge the risk associ-
ated with each pedestrian, and demonstrate more caution in
avoiding those with large risks.

In this study, we focus only on distraction due to techno-
logical factors, particularly the use of cellphones for different
tasks, and ignore social impacts such as talking or walking
in a group. The contributions of this study are listed below:
• A high resolution dataset of images for the study of

pedestrian distraction is presented. This enables fine-
grained analysis of each pedestrian and the objects they
interact with.

• A novel framework that fuses different image-based
information streams to predict a probability score sug-
gesting the engagement of a pedestrian with his/her
cellphone.

2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC)
Windsor Oceanico Hotel, Rio de Janeiro, Brazil, November 1-4, 2016

978-1-5090-1889-5/16/$31.00 ©2016 IEEE 1882



Fig. 1: A sample of pedestrians present in the newly proposed dataset. The dataset is naturalistic and unrestricted in the
scale, size, and pose of the pedestrians.

II. RELATED WORK

There is an abundance of work related to pedestrian
detection, human activity recognition, and their classifica-
tion from the last decade. However, these studies pertain
to generic human activities and are not of much use in
studying pedestrian distraction. Most studies that claim to
recognize pedestrian activity [5]–[7] do so indoors with the
help of wearable sensors. This offers little utility from an
intelligent vehicle stand-point. Although not directly related
to pedestrian distraction, studies like [8], [9] propose systems
to predict avoid collisions with generic pedestrians thereby
improving road safety. To the best of our knowledge, there
have been no vision-based studies for detecting pedestrian
distraction, or more specifically, cellphone engagement.

As we mentioned earlier, driver behavior and activity has
been analyzed in detail over the years. Some representative
studies in this domain include [10], [11]. A more general
analysis of humans in the age of highly automated vehicles
is provided in [12].

As far as pedestrian datasets are concerned, we have
noticed a rise in datasets that provide fine-grained catego-
rization of pedestrians. Examples of these include [13], [14]
where attributes such as age, clothing, sex and weight of the
pedestrian are annotated in addition to the bounding box and
articulated pose. However, none of these datasets annotate
or even include a considerable representation of distracted
pedestrians.

III. DATASET DESCRIPTION

Since pedestrian distraction due to cellphone usage is more
common among the college-age population, we mounted
4 GoPro cameras, each facing a different direction, on an
intelligent vehicle testbed parked at an intersection in the
UC San Diego campus on a busy afternoon. By capturing
different viewpoints on each camera, we ensure that pedes-
trians are not predisposed to appear in a particular location or
facing a certain direction. Furthermore, pedestrians are cap-
tured holding a variety of objects in addition to cellphones,
such as bags, drinks, food and other miscellaneous items.
To facilitate the finer analysis of each pedestrian, videos
were captured at 2.7k resolution, resulting in pedestrians as

large as 400 pixels in height in few cases. Some exemplar
pedestrians are shown in Figure 1 to depict the diversity and
quality of the dataset.

IV. PROPOSED FRAMEWORK

In this framework, we suggest incorporating information
on a finer scale along with holistic information from the
full body pose of a pedestrian. Figure 2 provides a high-
level view of our proposal. In the subsections that follow,
we detail the inner workings of each module.

Image
+

Pedestrian 
location & scale

Feature extraction
+

Classifier

Pose Estimation

Belief NetworkPose Cluster

Score

Fig. 2: Block diagram of proposed framework.

A. Pedestrian Pose Estimation and Cluster Formation

The articulated pose of a pedestrian can be an invaluable
cue in estimating the activity he/she is involved in. Recent
advances in pose estimation using deep convolutional neural
networks (ConvNets) have led to state of the art results on
challenging benchmarks. We make use of one such architec-
ture, called the Stacked Hourglass Networks [15] proposed
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Fig. 3: Representatives obtained by clustering the articulated
pose of pedestrians. Joints corresponding to the right arm are
colored in red.

by Newell et al. This network has been trained on the MPII
dataset [16] comprising of 25K images containing over 40K
people, involved in 410 different activities, and outputs the
locations of 16 joints corresponding to the articulated pose of
a human body. We use this pre-trained network and fine-tune
it on our own dataset. This gives us marginal improvement in
performance compared to an out-of-the-box implementation.
The reader is requested to refer to Figure 3 for a typical
visualization of the predicted joints.

Most human pose estimation algorithms require the rough
location and scale of the human in the image plane. In this
study, we assume that such information is available before-
hand, and focus our attention on analyzing each pedestrian
in greater detail. However, if desired, the location and scale
of pedestrians may be obtained easily from any generic
pedestrian detector.

Consider a pedestrian bounding box parametrized as
(x, y, w, h). Here, x and y correspond to image coordinates
of the top left corner of the bounding box, and w and h
describe the dimensions of the box. For the pedestrian under
consideration, the pose estimation network outputs a set of
image locations {(xi, yi)}i=1,··· ,16 corresponding to each
joint. The set of normalized joint locations {(x̄i, ȳi)}i=1,··· ,16
are then found as follows:

x̄i =
xi − x
w

, ȳi =
yi − y
h

,∀i = 1, · · · , 16. (1)

Over a training dataset of 1019 pedestrians, the above
process is repeated to generate a vector of normalized
articulated pose for each pedestrian as described below:

x = (x̄1, ȳ1, · · · , x̄16, ¯y16) ∈ R32. (2)

Given a set of all such pose vectors, we carry out a
soft clustering of poses using a Gaussian Mixture Model
(GMM) with 16 mixture components. We prefer the use

(a) (b)

Fig. 4: Image patches obtained when the local window is
centered around the (a)wrist versus the (b)hand.

of a GMM over hard clustering techniques like K-means
as it tends to suppress smaller (yet considerably different)
clusters which ultimately reduces the variety among cluster
representatives. The choice of 16 clusters is made after
observing a plot of the Bayesian Information Criterion (BIC)
versus the number of components in the GMM. We scale
and plot the representatives (mean values) for each cluster
in Figure 3. It is interesting to note that some clusters (e.g.
6, 8 and 10) are inherently prone to higher chances of the
pedestrian being engaged in cellphone activity. We make use
of this observation in later sections.

B. Cellphone presence/absence classification

Next, we aim to determine the presence or absence of
a cellphone in either hand of a pedestrian. To do so, we
first regress to the approximate location of the hands of a
pedestrian, assuming that it is collinear with the joints cor-
responding to the elbow and wrist. Let (xe, ye) and (xw, yw)
denote the image plane coordinates of the elbow and wrist
respectively. With the assumption above, the approximate
location of the hand (xh, yh) is obtained as follows:

xh = xe +
xw − xe

r
, yh = ye +

yw − ye
r

, (3)

where r is a a parameter that depends on the ratio of distances
of the elbow from the wrist and hand respectively. In our
experiments, r = 5/6 seemed to generate the best results.

Once we have the rough locations of both hands in the
image plane, we crop out a local image window around
these locations. The window size is chosen to be αh for
a pedestrian parametrized by (x, y, w, h). Here α is a hyper-
parameter that ensures that the local window scales with the
size of the pedestrian. In our experiments, α is set to 0.3.
The window around each hand is resized to a 64×64 image
patch and HOG [17] features are extracted from it. Examples
of such local patches for windows centered around both the
wrist and the hand can be found in Figure 4. It is obvious
that inferring the hand location, even if approximate, helps
in centering the object of interest with respect to the window.

We use the same training data as before and train an SVM
classifier [18] over HOG features extracted from all such
image patches. We additionally augment the data by flipping
and scaling the windows. A stratified 3-fold cross validation

1884



is carried out for tuning the hyper-parameters of the SVM.
An SVM with RBF kernel and parameters C = 10, γ = 0.01
resulted in the best cross-validation accuracy of 87.7%.

C. Belief Network

It must be noted that the presence of a cellphone alone
does not imply pedestrian distraction. In fact, it is habitual
for many pedestrians to simply hold their phones in one
hand while walking, without engaging themselves in its use.
Similarly, cluster membership for a particular pose alone
cannot guarantee cellphone usage. This calls for a fusion
of information from both these sources, while maintaining
their dependencies on one another.

To achieve this, we propose a belief network over the
following random variables. Let E,C ∈ {0, 1} be binary
random variables indicating the engagement of a pedestrian
(with his/her cellphone) and the presence of a cellphone
in either hand of the pedestrian respectively. A pedestrian
is considered to be engaged if he/she is involved in any
cellphone activity that places a visual or cognitive load.
Examples of such activities include texting, browsing the
phone, and attending a call. Next, let K ∈ {1, · · · , 16} be a
random variable that denotes the cluster membership of the
articulated pose of a pedestrian. Finally, let I ∈ R64×64×3

represent the local image patch around the hands of the
pedestrian. With the above notation in place, our final goal
is to estimate the probability of pedestrian engagement with
his/her cellphone given the articulated pose and extracted
image patches i.e. P(E|K, I).

The desired probability, after marginalizing over C and E
may be written as:

P(E|I,K) =

∑
C∈{0,1} P(C,E, I,K)∑

E∈{0,1}
∑

C∈{0,1} P(C,E, I,K)
. (4)

The numerator and denominator may be decomposed
further to yield:

P(E|I,K) =
P(E|K)

∑
C P(C|E,K)P(I|C,K)∑

E P(E|K)
∑

C P(C|E,K)P(I|C,K)
.

(5)
Assuming conditional independence of I and K given

C, and using Bayes’ rule, we may replace P(I|C,K) in
equation 5, resulting in

P(E|I,K) =
P(E|K)

∑
C P(C|E,K)P(C|I)P(C)−1∑

E P(E|K)
∑

C P(C|E,K)P(C|I)P(C)−1
.

(6)
In equation 6, the terms P(E|K) and P(C|E,K) are

replaced by their maximum likelihood (ML) estimates. This
is done by manually counting the occurrences of each
random variable, as well as co-occurrences among different
variables in the training dataset. It must also be noted
that P(C = 1|E = 1,K) = 1. The terms P(E|K) and
P(C|E,K) encode the inclination of certain clusters to
be composed of mostly engaged pedestrians, and of some
clusters that generally have a higher presence of cellphones.
The probability P(C|I) is obtained as a class confidence

score from the SVM classifier trained in subsection IV-B
based on the following rule:

P(C = 1|I) = max(P(C = 1|Ileft),P(C = 1|Iright)),
(7)

where Ileft and Iright are image patches corresponding to
the left and right hands of the pedestrian.

Finally, w = P(C = 1)−1 can be thought of as a
weighting parameter that expresses the importance assigned
to pedestrian pose relative to the presence or absence of a
cellphone. Increasing w makes the system more indifferent
to the presence of a cellphone and assigns probabilities based
purely on the pedestrian pose.

V. EXPERIMENTAL EVALUATION

To evaluate the performance of our framework, we create a
test dataset of 150 images (separate from the training dataset
used earlier) amounting to a total of 182 pedestrians. Each
pedestrian is manually labeled to be either engaged in using
a cellphone (E = 1) or otherwise.

As the framework outputs a single probability score
P(E|I,K), it needs to be thresholded to predict a final class
E. Since the scores are dependent on the ML estimates and
the weight parameter w, there is no necessity to restrict
the threshold t to be 0.5. It is possible take a conservative
approach and fix the threshold to a much lower value if
necessary. In Table I, we list the classification accuracy over
the test dataset for different values of the threshold t and
w. We also use different values for the weight parameter
w ∈ {5, 8, 10, 12, 15} to study its effect on the result. Setting
w = 8 and t = 0.6 results in the highest accuracy of 0.9120,
and seems to agree the most with class labels assigned by
human annotators. Moreover, the accuracy for extreme values
of t indicates that there is a good separation between the
scores assigned to the two classes.

Example results for cellphone engagement are shown in
Figures 5 and 6. For the ease of discussion, we refer
to the panels in Figure 5 from here on. The proposed
system is seen to work reliably on different pedestrians
irrespective of their orientation with respect to the camera.
Even in cases where the pedestrian is walking away from the
camera, the predicted scores are seen to be reasonable (panel
A). Pedestrians on calls are assigned higher scores almost
always, even if certain joints may be localized incorrectly
(panel D). The cellphone presence classifier is seen to be
extremely useful in cases similar to the one shown in panel B.
Here, the pose alone assigns a high probability for cellphone
engagement. However, the classifier manages to suppress
this high value as no cellphone is present in either hand
of a pedestrian. In a similar fashion, the pose information of
the pedestrian in panel C suppresses his score for cellphone
engagement, despite the presence of a cellphone. This shows
that our system leverages information from both sources to
overcome individual constraints and predict a coherent final
score.

Panels E and F highlight some common scenarios where
incorrect scores are predicted. The pedestrian in panel E is
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TABLE I: Results on the test dataset for different values of weight w and threshold t. Classification accuracy is seen to
peak at w = 8, t = 0.6.

w t Accuracy w t Accuracy w t Accuracy w t Accuracy w t Accuracy

5 0.1 0.7417 8 0.1 0.6593 10 0.1 0.6043 12 0.1 0.5659 15 0.1 0.5329
0.2 0.8516 0.2 0.7967 0.2 0.7417 0.2 0.7362 0.2 0.6813
0.3 0.8901 0.3 0.8516 0.3 0.8241 0.3 0.8021 0.3 0.7857
0.4 0.9065 0.4 0.8846 0.4 0.8626 0.4 0.8571 0.4 0.8406
0.5 0.9065 0.5 0.8956 0.5 0.8956 0.5 0.8901 0.5 0.8626
0.6 0.8956 0.6 0.9120 0.6 0.9113 0.6 0.9010 0.6 0.9010
0.7 0.8626 0.7 0.8956 0.7 0.9010 0.7 0.9010 0.7 0.9065
0.8 0.8351 0.8 0.8406 0.8 0.8626 0.8 0.8626 0.8 0.8791
0.9 0.8131 0.9 0.8131 0.9 0.8186 0.9 0.8241 0.9 0.8406

A B

C D E F

Fig. 5: Results of our proposal on the test dataset. Pedestrians are cropped out for better visualization. The articulated pose
is overlaid on the pedestrian and the corresponding cellphone engagement score P(E|I,K) is written on top (in yellow).
Note that each black box is referred to as a panel in the text.

assigned a relatively lower score despite being engaged in
cellphone activity. This is because the cellphone is barely
visible in the hands of the pedestrian, resulting in a low score
from the classifier. The examples in panel F indicate that
higher scores are assigned to pedestrians who are holding
phones, irrespective of where they are actually looking.
This may lead to incorrect results in rare cases where the
pedestrian is momentarily looking elsewhere.

VI. CONCLUDING REMARKS

In this paper, we investigated the need for pedestrian
distraction monitoring in an effort to reduce the growing

number of pedestrian fatalities. To this end, a pipeline based
on belief networks is proposed to fuse image information
from both coarse and fine scales, and predict a final score
for cellphone engagement. To train and test the validity of
our proposal, a real world dataset of distracted pedestrians is
presented. Such a system goes beyond pedestrian detection
by assigning confidence scores indicating phone-based dis-
traction. Pedestrians with higher scores are at a higher risk
of being disengaged with their surroundings, and hence must
be handled with extra care by the driver/intelligent vehicle.

Future work encompasses studying other sources of pedes-
trian distraction (e.g. talking, walking in a group, listening
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Fig. 6: More results on the test dataset. The proposed systems outputs an engagement score (in yellow) corresponding to
each pedestrian detected in the image.

to music etc.), and integrating all such factors to predict a
combined distraction score for each pedestrian. Additionally,
the value in including other cues like head pose and gaze for
pedestrian distraction needs to be examined.
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