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Abstract—Object detection and localization in images involve
a multi-scale reasoning process. First, responses of object de-
tectors are known to vary with image scale. Second, contextual
relationships on a part-level, object-level, and scene-level appear
at different scales of the image. This paper studies efficient mod-
eling of these two components by training multi-scale template
models. The input to the proposed algorithm involves image
features computed at varying image scales, hence operating on
volumes in the feature pyramid. The approach generalizes single-
scale, local-region detection approaches (e.g. sliding window or
region proposals), jointly learning detection and localization cues.
Extending the common single-scale detection to a multi-scale
volume allows learning scale-specific models as well as analyzing
the importance of contextual information at different scales.
Experimental analysis on the PASCAL VOC dataset shows the
method to considerably improve both detection and localization
performance for different type of features, histogram of oriented
gradients and deep convolutional neural network features.

I. INTRODUCTION

Modeling information at different image scales is funda-
mental to many tasks in computer vision [1]–[3]. In object
detection, detection at different scales is commonly achieved
using models that are trained for classification of cues inside
a local region (e.g. sliding window or region proposals). This
popular scheme is often applied over re-sampled versions of
the original image in order to handle detection at multiple
scales, which implies evaluation of the trained model at
different scales independently. A key disadvantage of such
an approach is that it ignores the highly patterned cues that
manifest at different scales and resolutions. Looking at Fig.
1, the information over scales is far from independent. This
work proposes a novel formulation of the multi-scale detection
pipeline, generalizing the traditional single-scale approach to
reason over detection and localization cues found in all of the
scales of the sampled image pyramid. Our main contribution is
in a learning framework that can better leverage patterns and
structure in multi-scale cues, hence we refer to the proposed
approach as MSS (Multi-Scale Structure).

Fig. 2 depicts the proposed MSS detection pipeline. The
learned weights for one of the MSS templates (for a car model)
are shown as well, with a corresponding example positive
image sample. The model shown in Fig. 2 was trained using
conv5 convolutional feature maps extracted using AlexNet
[4]. As shown, cues are often selected at high amount in
the scale of best match (second scale from the left in the
figure), but the overall cue selection process spans all of the
scales of a 7-scale image pyramid used in the experiments.
This is intuitive - although only one of the scales best fits

Fig. 1: Traditional object detectors train and test models at
a single scale, thereby ignoring information over scales at a
specific spatial window location. Our study is motivated by
the fact that multi-scale information is highly structured. For
instance, cues at different scales, such as the road or the license
plate, provide detection and localization information for the
car. The overlap with the ground truth box (shown in red)
also follows a clear structural pattern.

the car, different scales may contain cues important for the
localization and detection of that vehicle in the best fitting
scale, such as parts of the vehicle (the bumper, license plate,
or tail lights) and contextual scene information (such as road
cues, or other objects). Modeling such multi-scale information
is useful for detection and localization, leading to significant
gains in detection performance on the challenging PASCAL
VOC object dataset [5].

This study presents significant gains in detection perfor-
mance can be obtained without altering the underlying de-
scriptor but by replacing the traditional multi-scale pipeline
with the proposed novel multi-scale structure MSS approach.

II. THE MULTI-SCALE STRUCTURE (MSS) APPROACH

Multi-scale reasoning extracted from multiple image scales
has been shown to be essential for a variety of vision tasks
(e.g. image segmentation [6]), yet its usage in object detection
has been limited. Two main differences stand between the
proposed, MSS approach, and related studies employing multi-
scale contextual reasoning. First, MSS classifies all scales
in a feature pyramid at once, while related studies classify
them independently [7]–[19], often with models learned over
a single image scale. For instance, the deformable part model
[9] employs part HOG [20] features extracted from twice the
resolution scale of the root template model, yet the main multi-
scale sliding window pipeline is left unchanged, resulting in
limited multi-scale reasoning capabilities. Other approaches,
such as R-CNN [7], SPPnet [8], or DeepPyramid [21], also
operate on individual local region within a single image scale,
as opposed to features in regions across multiple scales of an
image/feature pyramid. Second, the MSS framework proposes
a modification to the inference label space, so that both a
detection label and a scale label are predicted. This procedure

Intl. Conference on Pattern Recognition, 2016



high 
value 

low 
value 

Image 
Feature 
Pyramid 

Spatial 
Location 

Multi-scale 
template 

NMS Detection 

Fig. 2: The proposed multi-scale structure (MSS) approach learns joint detection and localization multi-scale templates by
operating on volumes in a feature pyramid. An example MSS model with CNN features (one out of the 7 trained for the
car object category) is visualized with a corresponding positive image sample. For a scale-specific car detection task, cues at
different image scales, both adjacent and remote, are shown to be useful (in the visualization, brighter colors imply spatial
locations with greater discriminative value).

leverages localization cues across the scales, and thereby
differs from the studies of [6], [22], [23], where there is no
such modification to the label space.

In this section, we outline the mathematical formulation
of the proposed MSS approach. We demonstrate traditional
object detectors to be a special case of our generalized all-
scale framework.

A. Feature pyramid

We pursue two efficient approaches for obtaining a feature
pyramid. Two types of commonly employed features are
employed in order to study generalization of the proposed
MSS approach. First, we employ the HOG implementation
of [9] which is still widely used and serves as a classical
baseline. Because HOG features are sensitive to scale, we
demonstrate large detection performance gains by employing
the proposed MSS approach over the single-scale baseline. We
also utilize richer deep Convolutional Neural Network (CNN)
features [7], [21]. Motivated by existing CNN-based object
detectors, [11], [24], an efficient pyramid is extracted with a
truncated version of the 8-layer AlexNet [4] network which
won the ILSVRC-2012 ImageNet challenge. We employ the
fifth convolution layer, which outputs 256 feature channels.
The input to each convolutional or max pooling layer is zero-
padded so that the features in a zero-based pixel location
(x, y) in the feature space were generated by a receptive
field centered at (16x, 16y) in the image space (a stride of
16). As noted by [21], the CNN features already provide part
and scale selective cues. The conv5 features are enhanced by
employing a 3 × 3 max-poolying layer with stride of 1. For
direct comparison with [21], the same feature extraction and
pyramid pipeline was implemented.

B. Single-scale models for object detection

The detection baseline employs a fixed size model and a
pyramid of features in order to handle detection at multiple
scales (see Fig. 3). Let ps = (x, y, s) be a window in the s-
th level of a feature pyramid with S scales anchored in the

x, y position. For now, we assume a single aspect ratio model
for simplicity but training different aspect ratio models will
be studied in the experimental analysis. Generally, the feature
image is at a lower spatial resolution than that of the original
image. Consequently, a zero-based index (x, y) in the feature
map can be mapped to a pixel in the original image using
a scale factor (cx, cy) based on the resolution of the feature
map (for HOG, c = 8, and for CNN-conv5 features, c = 16).
Mapping spatial locations across scales can be achieved by a
multiplication by the scale factor.

Given a local window of features, φ(ps) ∈ Rd, the model
learns a classification scoring function (in our case, a Support
Vector Machine - SVM [25])

f(ps) = w · φ(ps) (1)

The model size is an overhead parameter, fixed according
to the size of the smallest object to be detected. Under this
formulation training a model involves only the features in the
local window, which is quite limited. As a matter of fact,
even humans may have trouble identifying objects from back-
ground from cropped local windows. Because both training
and testing involve classification of local windows in a single-
scale (φ(ps)), testing must involve repeated classification of
the same spatial location in the image pyramid across different
scales. Finally, as commonly performed in state-of-the-art
models, the scored windows are resolved using a heuristic non-
maximum suppression module, which does not reason over
image feature responses, multi-scale information, object and
scene relationships, and more.

An improvement over this approach has been described
using a template pyramid approach, which can be described
with nearly identical notation. Several studies employ template
pyramids [13], [16], [17], [26], [27] as it was shown to improve
detection performance due to capturing scale-specific cues.
For instance, larger objects contain more detailed information
which can be leveraged for improved classification. Here, a
differently-sized detection template is trained for each scale in

Intl. Conference on Pattern Recognition, 2016



𝜓(x,y) 

argmax
𝑘

𝑤𝑘 ∙ 𝜓 
• # objects? 
• Scale? 
• Layout? 

 

Fig. 3: Each MSS template wk operates on the scale volume ψ and predicts a score of confidence for the presence of the
object in a scale class, k. In inference, the highest score among the MSS templates is used for placing the final detection box
in a certain scale.

the image pyramid, (w1, . . . , wS). In inference with a template
pyramid, each spatial location p in the image (note that no
re-scaling of the image is needed so that the s subscript is
dropped) is classified with multiple scale-specific templates,

f(p) = max
s∈{1,...,S}

ws · φ(p) (2)

Although modeling scale-specific cues has been done in
the aforementioned studies, we note that none of the related
studies propose operating on multi-scale volumes which span
across all scales of the feature pyramid, nor modifying the
label space of the detector to include a localization label for
training joint detection and localization models. The exper-
imental analysis section will demonstrate how the detection
models benefit from having access to features at different
image resolutions in training and testing.

C. Multi-scale structure models (MSS) for object detection

Instead of scoring windows independently across each
scale, we propose to operate on the scale volume ψ(p) =
(φ(p1), . . . , φ(pS)) ∈ Rd×S which spans all scales of the
feature pyramid. Note that in the MSS approach, the feature
pyramid extraction pipeline remains unchanged compared to
the baseline. Employing ψ(p) allows for: 1) generalization of
the single-scale model approach, 2) Analysis of the role of
multi-scale feature-level contextual cues.

The objective of operating on scale-volumes is to resolve
the scale label as part of the inference process. Each sample is
assigned a label, y = (yl, yb, ys) ∈ Y with yl the object class
(in this study, yl ∈ {−1, 1}), yb ∈ R4 is the object bounding
box parameters, and ys is a scale label.

In our experiments, the model dimensions are obtained from
the the average box size of all positive instances in the dataset.
For each ground truth, ys is determined by selecting the scale
with maximum overlap (area of intersection over union). An

overlap of minimum 0.6 is required for a positive sample in
any of scale, otherwise the sample is put into the negative set.
For instance, for Fig. 1 where the overlap with the ground truth
is visualized in red text, ys = (00010) is the enumeration of
the label space.

1) Learning: The multi-scale volume across all scales can
be classified into a K class problem, where K is the cardinality
of the set of all possible enumerations of ys. In this work, we
set K to be the number of scales S, but in general K may
contain more classes than the number of scales.

Window scoring in MSS is done using

f(p) = max
s∈{1,...,S}

ws · ψ(p) (3)

where we learn s model templates, with each spanning
the same dimensionality as ψ(p), the multi-scale volume at
position p. The same volume is classified into S classes, where
the best fitting class is associated with a scale label (obtained
with an arg max in Eqn. 3). This process predicts the score
as well as the final box size at position p.

In order to learn the S linear classifiers parameterized by
the weight vectors ws ∈ Rd×S , the stochastic dual coordinate
ascent solver of [28] with a hinge loss is used. The maximum
number of iterations is fixed at 5× 106 and the tolerance for
the stopping criterion at 1× 10−7 for all of the experiments.
Despite significantly higher memory requirements and a large
feature vector for the MSS approach, training a single multi-
scale template on a CPU takes less than a minute on average.
A one-vs-all scheme is used to resolve the best fit scale and
score.

2) Relationship between MSS and the single-scale training
baseline: Inspecting Eqn. 3, and comparing it to Eqn. 1,
it is clear that Eqn. 1 is a special case of Eqn. 3. For
instance, setting ws to be all zeros outside of the best-fit
scale (degenerate case where out-of-scale features are not
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Fig. 4: Example MSS templates at a certain scale (ws in Eqn. 3), depicting the location of discriminative information throughout
the volume of multi-scale feature responses for different object categories. We observe how contexual and alignment cues (e.g.
road cues for the car object category, rider cues at a different scale for bicycle category, etc.) are selected throughout the
multi-scale volume. An example positive sample is visualized for each MSS class.

informative for discrimination of the object class) results in the
single-scale model formulation. Under this case, for each level
s in the pyramid, ws · ψ(p) becomes identical to w · φ(ps) as
in Eqn. 1. We also make the observation that MSS generalizes

the template pyramid approach in Eqn. 2, as it learns a scale-
specific weight vector ws. Scale-specific modeling is crucial
for robust detection and localization, as the type of contextual
appearance cues that the a multi-scale model can capture vary

Intl. Conference on Pattern Recognition, 2016



TABLE I: Detection average precision (%) on VOC 2007 test. Column C shows the number of aspect ratio components. The
proposed MSS approach is evaluated with HOG and CNN features.

C aero bike bird boat botl bus car cat chair cow table dog horse mbike pers plant sheep sofa train tv mAP

HOG 1 13.05 23.54 0.80 1.70 12.85 28.91 27.38 0.68 11.31 8.89 11.04 2.68 13.52 18.49 13.05 5.60 14.58 12.19 16.28 24.48 13.05
HOG-MSS 1 21.72 33.86 10.05 1.81 12.02 22.54 39.80 24.9 13.52 10.08 20.28 13.53 32.57 23.63 23.05 7.24 18.23 22.75 24.20 33.98 20.49

CNN [21] 1 33.54 55.95 24.97 14.24 36.96 44.31 52.33 40.37 30.07 44.56 9.09 34.47 51.26 53.39 38.66 25.22 40.16 41.36 36.31 57.97 38.26
CNN-MSS 1 41.88 56.17 30.40 12.54 25.05 43.36 60.75 50.27 27.68 45.41 51.25 41.94 55.60 55.71 49.30 22.25 43.91 46.22 42.27 52.78 42.74

TABLE II: Detection average precision (%) on VOC 2007
car test set. Column C shows the number of aspect ratio
components. ∆ AP shows improvement over the baseline used
in this work.

method C AP ∆ AP
HOG 1 27.38
HOG 3 32.91

HOG-MSS (ours) 1 40.04 +12.66
HOG-MSS (ours) 3 49.12 +16.21
CNN max5 [21] 1 52.33
CNN max5 [21] 3 56.90

CNN-MSS max5 (ours) 1 60.75 +8.42
CNN-MSS max5 (ours) 3 63.23 +6.33

with respect to the true scale of the object. This can also be
seen in the visualization of the learned MSS models (Fig. 4).

III. EXPERIMENTAL EVALUATION

The proposed MSS approach is studied on the widely used
PASCAL VOC 2007 dataset [5]. For the results, 5 rounds
of negative hard mining is performed for all methods, with
5000 negative samples added in each round (beginning with an
initial random set which is kept the same for all methods). For
HOG, we employ a 10 scale feature pyramid, and for CNN
we employ a 7 level pyramid spanning three octaves (scale
factor of 2−1/2 between levels). These were set according to
the procedure in Girshick et al. [21] in order to perform a fair
comparison with a baseline.

Table I demonstrates the results we obtain on the 20 object
categories in PASCAL. The overall detection performance
improvement is significant for HOG-MSS, by 7.44 mAP
points. The improvement due to the proposed HOG-MSS is
shown to be directly correlated with the variation in scale
within an object class. For instance, classes such as boat,
bottle, or potted plant, show a smaller improvement as they
contain small scale variation in PASCAL images. On the
other hand, classes containing the largest variation in scale,
such as cat, train, sofa, dining-table, dog, and horse, show
large improvement. Similar trends can be observed for CNN
features, which are more scale invariant. CNN-MSS achieves
an mAP of 42.74, an improvement of 4.48 mAP points over
the results of the publicly available code from [21]. 14 out
of the 20 classes exhibit a benefit from incorporating multi-
scale cues in training for CNN features, in particular for
classes exhibiting large scale variation. Fig. 5 compared the
CNN-MSS approach with the baseline in terms of the type
of errors made by each algorithm. The comparison is shown
on the ‘vehicles’ superclass of PASCAL (car, motorbike, etc),

based on the metrics proposed in [29]. As shown in Fig. 5,
incorporation of the MSS framework leads to a significant
reduction in localization errors.

As a final experiment, we analyze the improvement due
to learning multiple aspect ratio models, either with the
baseline or with the MSS framework. Results are shown in
Table II, for one and three aspect ratio components. The car
object category is used in the experiments as it contains both
significant variation in scale and aspect ratio among object
instances. The MSS approach is shown to consistently improve
car detection performance when increasing the number of
aspect ratio components, both with HOG and CNN features.
The CNN-MSS three aspect ratio component model reaches
63.23 AP, improving over the single aspect ratio component
model by 2.48 accuracy points. Furthermore, CNN-MSS with
three aspect ratio components outperforms the R-CNN [7]
framework (with features from the same convolutional layer,
pool5), increasing performance from 60.6 to 63.23 AP.

IV. CONCLUDING REMARKS

This paper proposed a generalization of the traditional
single-scale template detection approach in the aim of better
capturing multi-scale information. Training single-scale tem-
plates considers features only in a local region. Re-formulation
of the problem as a multi-class classification problem allowed
the study of a new class of models which were trained to
reason over both detection and localization cues. The new set
of models significantly improved detection performance when
compared to their single-scale template counterparts. In the
future, feature selection [30] over scales could significantly
reduce the dimensionality of the problem and allow for faster
inference run-time (For MSS-CNN, feature extraction is about
0.4 seconds per image with a Titan X GPU and MSS evalua-
tion is about 0.7 seconds per image on a CPU).
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