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Abstract

When in a new situation or geographical location, hu-
man drivers have an extraordinary ability to watch others
and learn maneuvers that they themselves may have never
performed. In contrast, existing techniques for learning to
drive preclude such a possibility as they assume direct ac-
cess to an instrumented ego-vehicle with fully known obser-
vations and expert driver actions. However, such measure-
ments cannot be directly accessed for the non-ego vehicles
when learning by watching others. Therefore, in an applica-
tion where data is regarded as a highly valuable asset, cur-
rent approaches completely discard the vast portion of the
training data that can be potentially obtained through indi-
rect observation of surrounding vehicles. Motivated by this
key insight, we propose the Learning by Watching (LbW)
framework which enables learning a driving policy with-
out requiring full knowledge of neither the state nor expert
actions. To increase its data, i.e., with new perspectives
and maneuvers, LbW makes use of the demonstrations of
other vehicles in a given scene by (1) transforming the ego-
vehicle’s observations to their points of view, and (2) in-
ferring their expert actions. Our LbW agent learns more
robust driving policies while enabling data-efficient learn-
ing, including quick adaptation of the policy to rare and
novel scenarios. In particular, LbW drives robustly even
with a fraction of available driving data required by exist-
ing methods, achieving an average success rate of 92% on
the original CARLA benchmark with only 30 minutes of to-
tal driving data and 82% with only 10 minutes.

1. Introduction

Modern autonomous driving systems primarily rely on
collecting vast amounts of data through a fleet of instru-
mented and operated vehicles in order to train imitation and
machine learning algorithms [4, 7, 15]. This process gen-
erally assumes direct knowledge of the sensory state of an
ego-vehicle as well as the control actions of the expert op-
erator. As driving algorithms largely depend on such costly
training data to learn to drive safely, it is regarded as a
highly valuable asset.
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Figure 1: Learning to Drive by Watching Others. While
existing imitation learning approaches solely utilize data
from an ego-vehicle perspective, our proposed Learning by
Watching (LbW) framework learns a more robust and data-
efficient policy from all available demonstration sources in
a scene.

Unfortunately, such data requirements have resulted in
self-captured data being amassed in the hands of a few iso-
lated organizations, thereby hindering the progress, accessi-
bility, and utility of autonomous driving technologies. First,
while technological giants such as Uber, Tesla, Waymo and
other developers may spend significant efforts instrument-
ing and operating their own vehicles, it is difficult to com-
pletely capture all of the driving modes, environments, and
events that the real-world presents. Consequently, learned
agents may not be able to safely handle diverse cases, e.g.,
a new scenario or maneuver that is outside of their in-house
collected dataset. Second, while small portions of driving
data may be shared, i.e., for research purposes, the bulk of
it is predominantly kept private due to its underlying worth.
Finally, we can also see how this current practice may lead
to significant redundancy and thus stagnation in develop-
ment. How can we advance the underlying development
process of safe and scalable autonomous vehicles?

In an application where the lack of a data point could
mean the difference between a potential crash or a safe ma-
neuver, we sought to develop a more efficient and shared
paradigm to ensure safe driving. Towards this goal, we pro-
pose the LbW framework for learning to drive by watch-
ing other vehicles in the ego-vehicle’s surroundings. Moti-
vated by how human drivers are able to quickly learn from
demonstrations provided by other drivers and vehicles, our



approach enables leveraging data in many practical scenar-
ios where watched vehicles may not have any instrumen-
tation or direct capture means at all.

Towards more effective use of a collected dataset, LbW
does not assume direct knowledge of either the state or ex-
pert actions. For instance, in the scenario shown in Fig. 1,
a non-instrumented human-driven vehicle or perhaps an-
other company’s autonomous vehicle is observed by our
ego-vehicle as they turn and negotiate an intersection. LbW
infers the observed agent’s state and expert actions so that it
may be used to teach our autonomous vehicle. By leverag-
ing supervision from other drivers, our LbW agent can more
efficiently learn to drive in varying perspectives and scenar-
ios. The framework facilitates access to large amounts of
driving data from human-driven vehicles that may not have
been instrumented to directly measure and collect such data.

While offering several benefits for scalability, learning a
driving model via indirect means of watching surrounding
vehicles in a scene also poses several challenges which we
address in this work. Specifically, to advance the state-of-
the-art of robust autonomous driving agents, we make the
following three contributions: (1) We propose LbW, a new
paradigm which can help facilitate a more efficient develop-
ment of driving agents, thus aiding real-world deployment,
(2) we develop an effective two-step behavior cloning ap-
proach which infers the states and actions of surrounding
vehicles without direct access to such observations, and (3)
we validate the impact of LbW on the resulting driving pol-
icy through a set of novel experiments on the CARLA and
NoCrash benchmarks. While previous approaches tend to
exclusively focus on driving policy performance, i.e., re-
quiring many hours of collected ego-vehicle training data,
we instead emphasize the benefits of our approach by vary-
ing and limiting the amount of available data. We also
demonstrate LbW to enable adaption to novel driving sce-
narios and maneuvers, without ever having direct access to
an operator of an ego-vehicle performing such maneuvers.

2. Related Work

Our LbW framework builds on several recent advances
in learning to drive, in particular imitation learning from
intermediate representations, in order to utilize the demon-
strations provided by all expert drivers in a given scene.

Imitation Learning for Autonomous Driving: Over 30
years ago, Pomerleau [55] developed ALVINN, a neural
network-based approach for learning to imitate a driver of
an ego-vehicle. The approach requires ego-centric cam-
era and laser observations and their corresponding opera-
tor steering actions. Since then, more elaborate approaches
for learning to drive have emerged [42, 78, 37, 68, 12].
Yet, techniques for imitation learning to drive are still
widely employed due to implementation and data collection

ease [7, 52, 40, 75], particularly the offline and supervised
learning version of behavior cloning [3, 55, 48, 60, 10]. Be-
havior cloning with conditional input is now a strong base-
line for driving in urban settings [47, 42, 14, 15, 51, 11,
58, 57, 24]. However, approaches generally require com-
plete access to the perceptual observations of the vehicle
together with the expert driver actions. Building on recent
advances in imitation learning to drive, our work takes a
step towards extending the traditional formulation so that it
may be applicable to challenging cases where direct access
to measurements cannot be assumed. Due to the difficulty
of our learning by watching task, the approach hinges on the
choice of underlying data representation, as discussed next.

Intermediate Representations for Autonomous Driving:
In parallel with steady progress in imitation learning to
drive, the computer vision and machine learning commu-
nities have dedicated significant effort towards advancing
perception and prediction tasks for autonomous vehicles.
As pioneered by several researchers and developers, notably
Dickmanns [19, 21, 20, 18], such tasks, e.g., semantic seg-
mentation [17], 3D tracking of salient on-road objects from
sensor input [26, 76, 72, 63, 71, 47, 70, 23, 27, 10], and fu-
ture predictions [61, 8, 13, 34, 35, 38, 41, 62, 74], can be
used in order to efficiently train a driving policy [76, 5]. Of
particular relevance to our study are approaches that lever-
age a Bird’s-Eye-View (BEV) of the scene [70, 23, 4, 73, 64,
25]. While researchers may focus on accurately obtaining
components of the BEV through a variety of sensor configu-
rations [30, 32, 59, 45, 56, 44, 28, 53, 54, 77, 1], in our work
we emphasize employing the BEV as a compact intermedi-
ate representation for learning a driving policy. Crucially, a
BEV enables to efficiently transform observations between
varying points of view and estimate agent-centric states
when learning by watching. In contrast, transforming other
types of representations across views, e.g., [16, 46, 77], can
be difficult for significantly differing perspectives.

Observational and Third-Person Imitation Learning:
Several related recent studies tackle more general cases of
imitation learning. For instance, methods may only require
an observation of the state, such as video footage, with-
out the underlying demonstrator actions. Kumar et al. [39]
learns an inverse model that can generate pseudo-labels of
actions for observed videos, and Murali et al. [49] explores
a similar learning by observation formulation for surgical
tasks. Nait et al. [50] presents a learning-based system us-
ing a pixel-level inverse dynamics model, i.e., for inferring
actions that were taken by the human manipulator given a
sequence of monocular images. However, such approaches
still require access to the underlying state of the human ex-
pert, whereas we tackle the more general settings where di-
rect access to neither the state nor the operator’s actions is
assumed. Another recent line of research analyzes third-



person imitation learning [65, 67], i.e., translating poli-
cies across slightly differing views of a shared workspace.
Liu et al. [43] present an imitation learning method based on
a context translation model that can convert a demonstration
from a third-person viewpoint (i.e., human demonstrator) to
the first-person viewpoint (i.e., robot). However, these re-
cent studies focus on toy settings and simplified visual en-
vironments, e.g., an inverted pendulum control task [67]. In
contrast, we are concerned with intricate multi-agent set-
tings in the context of autonomous driving. Here, our task
involves transforming and estimating demonstration data
across drastically varying perspectives, frequent occlusion,
dynamic scenes, and noisy agent tracking.

3. Method
In this section, we describe our LbW approach. We first

define the learning setting as it has some key differences
compared to existing approaches for imitation learning to
drive (Section 3.1). Next, we describe our method for imi-
tating the driving policies of not only our own instrumented
and operated ego-vehicle, but of the surrounding vehicles as
well. Our method consists of (1) an agent-centric input state
representation that can be efficiently transformed to an ob-
served agent frame of reference (Section 3.2), (2) a visibility
encoding for handling missing state information due to oc-
clusion and significantly differing viewpoints (Section 3.2),
(3) a waypoint-based decomposition of the action represen-
tation aimed to efficiently learn from surrounding drivers
(Section 3.3), and (4) a loss adjustment module for selec-
tively refurbishing difficult and noisy samples inherent to
the LbW task (Section 3.3).

3.1. Problem Definition

Imitation Learning Formulation: The objective of
our driving agent is to generate a control action
at ∈ A = [−1, 1] × [0, 1]2, i.e., the steering, throttle,
and brake at each time step t, in order to arrive to a pre-
defined destination. The input to the agent is the current
state st ∈ S, which comprises of information about the ve-
hicle and its surrounding context. The goal of the learning
process is to learn a mapping

πθ : S → A (1)

parameterized by θ ∈ Rd, also known as the policy func-
tion. In this work, we are concerned with learning πθ from
driver demonstrations. Traditionally, the process of imita-
tion learning [52] assumes access to the state and expert of
an operated ego-vehicle, i.e., trajectories of the form

τ expert = {(st,a∗t )}Tt=1 (2)

where a∗t are expert actions. The trajectories of directly
experienced states and corresponding demonstrator actions

are then used to learn a policy. The goal of the policy is to
produce driving behavior that is similar to the behavior of
the demonstrator.

Imitation Learning by Watching: Despite ample related
work studying our general decision-making problem, train-
ing LbW agents poses several unique challenges. Specifi-
cally, as in our case there is no direct access to either the
state or action information of the watched agent, represent-
ing and inferring such information becomes a fundamen-
tal challenge1. While surrounding vehicles are also driven
by expert drivers, their trajectories are perceived indirectly
from the viewpoint of the ego-vehicle. In this case, the un-
derlying state and demonstrator actions must therefore be
estimated, such that

τ expert-LbW = {(ŝt, â∗t )}Tt=1 (3)

Due to the estimation task, training LbW agents is a very
challenging problem. Specifically, such trajectory data must
be properly represented, transformed, and inferred to avoid
hindering driving performance. Next, we discuss how to
effectively learn to drive from such potentially incomplete
and noisy data.

3.2. Estimating Agent-Centric States

Estimating the agent-centric states of surrounding vehi-
cles is key to using their demonstrations in Eqn. 3 to learn
by watching. The complete state information is denoted as

st = [Bt,Mt, vt, ct] (4)

where Bt is the current Bird’s-Eye-View (BEV) image,
Mt is a visibility map of the scene computed from the
viewpoint of the ego-vehicle, vt is the current speed, and
ct is a categorical variable specifying a high-level naviga-
tion command following the goal-driven CARLA naviga-
tion task [14, 11]. We further discuss these variables below.

Bird’s-Eye-View State Representation: We propose to
leverage a BEV image of the environment as it provides a
compact and intuitive intermediate representation for learn-
ing a driving policy. The BEV representation will be crucial
for addressing issues with differing viewpoints and missing
observations when learning by watching.

As shown in Fig. 2, our BEV is a rendered tensor
B ∈ {0, 1}W×H×7 of a top-down view as perceived by
the agent. The grid representation encodes each object type
in a distinct channel, including the position of the road,
lane marks, pedestrians, vehicles, and traffic lights and their
state, i.e., red, yellow or green. The viewer position is fixed

1To clarify, it is only during LbW agent training that we have proxy
and partial information regarding the states and expert actions of other
agents. Once our LbW agent is trained, test-time driving is identical to
the an agent learned via traditional ego-centric imitation learning, i.e., the
state is directly observed.
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Figure 2: Bird’s-Eye-View (BEV) Representation With Visibility Map Overlay. We visualize (a) the reference top-
down view of a scene, (b) its corresponding LiDAR map with vehicle and pedestrian detections, (c) the ego-centric BEV
after integration with map information, including the ego-vehicle (magenta), surrounding vehicles (blue), pedestrians (purple
circles), traffic lights (yellow, red), and visibility map (green overlay), and (d) the estimated BEV from the perspective of the
observed vehicle. Dark yellow circles show future waypoints (Section 3.3) for the ego and observed vehicle.

at the BEV’s middle-bottom portion with a perpendicular
orientation to the x-axis. Further details regarding BEV
computation can be found in the supplementary.

While there has been significant work in obtaining BEV
representations from a variety of sensor setups and maps,
our work primarily focuses on leveraging such represen-
tations, in particular [72], in order to learn a robust pol-
icy. We focus on the most essential state information for
the BEV, such that other algorithms and more sophisticated
representations, e.g., for agent dynamics and temporal con-
text [30, 2, 9] can be easily integrated to extend our analysis
in the future.

Observed Agent-Centric BEV: Observed drivers are re-
acting to the surroundings as perceived from their own per-
spective. The benefit of using a BEV representation, i.e.,
compared to low-level sensor information, is the crucial
simplification it offers when estimating states from the per-
spective of other vehicles.

To obtain an agent-centric BEV, we employ the 3D lo-
cation l and orientation α of an observed agent [72]. Next,
any point x ∈ B can be transformed through rotation and
translation to an agent-centric frame of reference

xB̂ = Robserved
ego (α)Tobserved

ego (l)xB (5)

where x, written in homogeneous coordinates, is trans-
formed to a new origin according to a rotation matrix cal-
culated from α and a translation matrix calculated from l.
This process produces a BEV for an observed vehicle B̂.

In addition to the agent-centric BEV, we estimate the
speed and high-level command of watched agents (v̂, ĉ) by
tracking and comparing their 3D position over time, as ob-
served from the ego-vehicle perspective. We analyze mo-
tion of observed vehicles relative to their entrance position
to an intersection in order to obtain ĉ.

Visibility Map: Our choice of a BEV state representation

facilitates a more efficient learning by watching task. How-
ever, in practice, the viewpoint transformation in Eqn. 5 can
only roughly account for the state as it would have been
perceived from the perspective of another vehicle. Due to
occlusion and differing viewpoints in cases of complex ur-
ban settings, it is likely for the BEV estimation process to
miss critical scene components. While missing scene con-
text that could be perceived from a different perspective is
a frequent issue in our experiments, Fig 3 demonstrates a
more severe example. Here, a stopped vehicle drastically
limits the BEV of the ego-vehicle. This results in a poor
estimate of the BEV for the observed vehicle, i.e., entirely
missing an unobserved vehicle which greatly influences ac-
tions by the driver in the observed vehicle. In general, cases
of occlusion can produce trajectories with various driving
actions that cannot be well-explained by our estimate of the
agent-centric BEV B̂.

We propose to alleviate this critical issue of potentially
missing information by utilizing a visibility map representa-
tion [31, 33]. The visibility map, as shown in Figs. 2 and 3,
encodes areas in the BEV that were not directly perceived
by the ego-vehicle. In this manner, the LbW agent can rea-
son over crucial cues of unavailable information and learn to
leverage the estimated BEV effectively during dense driving
scenarios. While visibility and occupancy maps have been
extensively studied in the general context of autonomous
driving, its impact on learning policies from surrounding
vehicles in complex, multi-agent settings with missing state
information has not been previously analyzed. Moreover,
it is important to note that we always compute the visibil-
ity map M via ray-casting in the perspective of the ego-
vehicle. This step ensures that samples with low visibility in
the original frame of reference are properly handled during
LbW training. Eqn. 5 is then used to obtain an agent-centric
visibility map M̂.



3.3. Inferring Demonstrator Actions

When learning by watching, our goal is to leverage
demonstrations provided by other drivers as additional data
for training the policy function πθ. However, the expert
actions taken by drivers of other vehicles must first be in-
ferred to be used as learning targets for behavior cloning
approaches [14, 15]. Nonetheless, inferring the steering,
throttle, and brake control without having direct observation
of such measurements is difficult. Therefore, as in the pre-
vious task of estimating agent-centric states, the LbW task
hinges on the choice of a suitable underlying action repre-
sentation. To effectively learn by watching, we propose to
use a waypoint-based decomposition of the policy function.

Waypoint-Based Action Representation: The motion of
watched vehicles as they are being driven alludes to the un-
derlying operator actions. Motivated by this insight, our
approach for inferring the actions of watched vehicles em-
ploys a representation based on waypoints. Each vehi-
cle’s observed motion can be unambiguously defined in
terms of visited waypoints, i.e., a sequence of traversed
positions by the expert in the BEV over time w∗ =
{w∗

0,w
∗
1, ...,w

∗
K} [11]. During testing of the agent, the

waypoints can then be passed as targets to a low-level con-
troller g, e.g., a PID controller [69, 11]. The controller can
then produce the final policy, such that

πθ(s) = g(fθ(s)) (6)

where fθ(s) is a learned waypoint prediction function. We
do not use a parameter notation for g as it does not in-
clude trainable parameters in our implementation. This de-
composition can also simplify the overall policy learning
task [37, 47]. While we can use a control model to infer
low-level actions and use these as policy output targets di-
rectly, in practice we found this task to be ill-posed. In-
stead, the high-level waypoint-based action representation
provides a standardized framework for combining action
data from multiple different agents. It also enables the ex-
plicit handling of incomplete and noisy data inherent to the
inferred experts, as discussed next.

Waypoint Refurbishment for Observed Vehicles: One of
the main challenges of using the indirectly observed train-
ing data is the ability to learn from difficult samples with
missing or noisy information. For instance, the observed
waypoints may contain significant noise due to the under-
lying sensor setup and perception algorithm in Section 3.2.
Moreover, even in cases where the waypoints are observed
accurately, the lack of state information to sufficiently ex-
plain their trajectory could potentially lead to ambiguity
during agent training. In the visualized example of Fig. 3,
the observed waypoints will not be fully explained by the
available state information, i.e., expressing an inferred ac-
tion to brake. Instead, the waypoints may vary arbitrarily

Occluded
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Ego

(a) Reference scene (b) Ego-centric BEV

(c) Estimated BEV (d) Refurbished waypoints

Figure 3: Refurbishing Difficult Samples. The example
estimated view for an observed vehicle, shown in (c), is
ambiguous due to occlusion. The proposed refurbishment
process (Section 3.3) can correct the waypoint targets (d) to
align with the estimated state and encourage proper agent
behavior, i.e., to move forward and maintain a closer dis-
tance to the red light.

despite an identical estimated state. Although the presence
of numerous difficult and noisy samples could hinder pol-
icy training (Section 3.4), discarding samples can remove
potentially useful training data [66].

To take full advantage of the observed demonstrations,
we employ a sample refurbishment process. We mod-
ify observed waypoints using a confidence hyper-parameter
β ∈ [0, 1] for determining the amount of refurbishment, i.e.,

ŵ∗ = βw∗ + (1− β)ŵ (7)

where w∗ are the observed waypoints and ŵ are correction
values. β is used to specify the reliability of the waypoint
extraction step. As discussed further in Section 3.4, the cor-
rection labels ŵ are predicted from the estimated state ŝ by
an ego-only baseline model as it is trained using clean data,
i.e., without any LbW data. In this manner, we can fur-
ther mitigate noise and prevent overfitting to ambiguous or
incorrect waypoint labels, thereby reducing their negative
impact during training. We study the benefits of waypoint
refurbishment for robust training with difficult cases of oc-
clusion as well as overall perception noise in Section 4.



3.4. Training
Dataset: Motivated by the success of behavior cloning al-
gorithms, e.g., [15, 14, 11], we pursue a supervised learn-
ing approach for learning from driver demonstrations. Dur-
ing training, as in previous work, we assume a collec-
tion of driver demonstrations comprising of sequences of
ego-vehicle trajectories, D∗

ego = {τ expert
i }Ni=1. Differ-

ently from previous work, the proposed LbW method can
then be used to extract new training data from the origi-
nal ego-vehicle trajectories. By leveraging human drivers
which are operating the surrounding vehicles as expert
demonstrators, we generate an additional trajectory for each
agent j that is observed throughout a drive i such that
D∗

LbW = {τ̂ expert-LbW
i,j }Mj=1, where τ̂ denotes refur-

bished trajectories. By incorporating the additional trajecto-
ries, our method enables learning robust policies with much
smaller amounts of total collected driving time.

Robust Policy Learning: We learn a prediction function fθ
by minimizing a waypoint-based behavior cloning (WBC)
loss over samples from a dataset D

LWBC = E(s,w)∼D [`1(w, fθ(s))] (8)

The `1-loss is computed over the next K target waypoints
that the autonomous vehicle should learn to predict.

We train a robust LbW policy using Eqn. 8 in three
steps. First, we leverage D∗

ego and train a baseline behav-
ior cloning model, fθ̂(s). In general, we assume that sam-
ples in D∗

ego provide correct and clean supervision, as they
were obtained through direct observation of driver actions.
We then use the learned ego-only model to refurbish the
LbW samples and obtain D∗

LbW , i.e., by setting ŵ = fθ̂(s)
in Eqn. 7. Thus, leveraging the baseline model to correct
observed waypoints provides an explicit mechanism for re-
moving overall noise and mislabeled samples. The refur-
bishment mechanism also aids in standardizing demonstra-
tions across the various observed actors. Finally, the full
model fθ is trained from scratch over the complete dataset
D∗ = D∗

ego∪D∗
LbW . In this final step, the refurbished way-

point targets improve robustness by effectively adjusting the
loss in Eqn. 8 [66]. During testing, we use our learned func-
tion fθ to map states to waypoints. The waypoints are then
given to the PID controller to obtain the policy πθ, i.e., as an
inverse dynamics model for mapping waypoints to actions.

3.5. Implementation Details
We implement fθ as a convolutional neural network with

trainable parameters θ. We follow Chen et al. [11] and train
a state-of-the-art BEV-based conditional behavior cloning
agent (see supplementary for details).

Visibility Map Integration: We are interested in analyzing
the impact of integrating the visibility with the BEV on pol-
icy learning as means to encode missing state information

and reason over potentially ambiguous corresponding way-
point labels. As visibility maps have not been thoroughly
studied in this specific context, we explore two network
structures for integrating visibility cues, early and late fu-
sion. In the early fusion scheme, the visibility map is lever-
aged as another channel concatenated to the BEV prior as
an input to the backbone. However, the type of informa-
tion encoded in the visibility map significantly differs in its
purpose from the type of object position information that is
found in the BEV. Therefore, we also experiment with a late
fusion scheme, with a separate backbone for the visibility
map. Both fusion schemes enable the network to weigh the
two sources of information as needed, i.e., when waypoints
are poorly explained by the BEV alone.

4. Experiments

We use the 0.9.9 version of the CARLA simulator [22]
for generating diverse multi-agent driving scenes and eval-
uating the proposed LbW framework.

Original and NoCrash CARLA Benchmarks: The
CARLA benchmarks [22, 14, 15] employ Town 1 of the
simulation for training and Town 2 for testing under vary-
ing navigation tasks. The original benchmark is now obso-
lete [51, 11], yet previous analysis used older versions of
the simulation (0.8.4-0.9.6). To analyze performance un-
der more recently introduced functionalities, e.g., complex
pedestrian behavior and changed graphics, we keep this
benchmark for reference and only use the most challenging
task of dynamic navigation settings [22]. We also consider
the more challenging NoCrash benchmark settings [15],
which employ various traffic density conditions (e.g., regu-
lar, dense) while not allowing for collisions. Previous ap-
proaches on CARLA generally require large amounts of
training data, specified as ego-vehicle driving hours, e.g.,
between five hours in [11] to 10 hours in [15]. In contrast,
our proposed method can effectively utilize much smaller
datasets. Therefore, we focus on much lower total driving
time of between 10 minutes and up to one hour. This exper-
imental setup also ensures that our method is beneficial to
low-data settings, e.g., for rare maneuvers.

Adaptation Benchmark: To further analyze the data-
efficiency limitations of our approach, we also introduce a
new benchmark defined by training over Town 1 and adapt-
ing the model to the most difficult town in the simulator,
Town 3. The commonly used first two towns are relatively
small and are comprised of similar features, e.g., simple
two-lane roads with only orthogonal three-way intersec-
tions. In contrast, Town 3 has diverse multi-lane roads and
intersections, with roundabouts, five-way intersections, and
diagonal and curved turns. For adaptation, we define a dis-
joint set of maneuvers for training and testing and collect a
small amount of data (a total of 10 minutes driving time) to



Table 1: Ablation Study. Comparison of driving success rate (%) for the proposed approach (LbW) with various visibility
fusion schemes. The baseline model (Ego) is trained by traditional behavior cloning. Mean and standard deviation are shown
over three runs using the original CARLA benchmark (OB) and the NoCrash benchmark (Regular: NC-R, Dense: NC-D).

One Hour 30 Minutes 10 Minutes

NC-R NC-D OB NC-R NC-D OB NC-R NC-D OB

Ego (Baseline) 46± 1 18± 1 56± 1 26± 2 12± 1 68± 1 24± 1 0± 0 64± 1
LbW 64± 1 24± 1 74± 1 52± 0 24± 0 68± 1 34± 1 6± 1 82± 4
LbW + Visibility (Early) 52± 1 24± 0 76± 1 54± 1 18± 1 72± 3 28± 1 6± 1 64± 1
LbW + Visibility (Late) 92± 3 24± 0 92± 1 74± 2 24± 0 92± 0 52± 1 20± 2 68± 1

Figure 4: Adaptation Benchmark. We visualize example
intersections from Town 3 together with agent testing routes
(not seen in training) in orange arrows.

be used for adapting the model trained in Town 1. Example
test routes are shown in Fig. 4. We define a CARLA and
NoCrash-type benchmarks on Town 3 with various driving
conditions. These challenging settings aim to analyze a re-
alistic scenario where an autonomous vehicle must quickly
learn to operate in a new situation or geographical location.

4.1. Results

We conduct four main experiments to analyze the bene-
fits of different components in our proposed approach. First,
we begin by comparing the performance of the LbW agent
with the traditional behavior cloning baseline [11]. Second,
we analyze the various underlying network structures for
fusion of the visibility map. Third, we explore the perfor-
mance of the LbW agent under a low-data regime. Finally,
we investigate the impact of the proposed label refurbish-
ment process when training robust driving agents.

LbW vs. Baseline: We first discuss our results using one
hour of total driving data. The analysis in Table 1 shows
the driving performance, in terms of success rate, for an
agent trained with our proposed approach. Results are
shown for both the NoCrash (NC) regular and dense bench-
marks as well as the reference original CARLA benchmark
(OB). With one hour of training data, we find the pro-
posed LbW approach to consistently improve overall driv-
ing performance, i.e., by 39%, 33%, and 32% over the
baseline agent for the NC-Regular, NC-Dense, and origi-
nal CARLA settings, respectively. Notably, the consistent

improvements are achieved by the LbW agent prior to in-
tegrating the visibility map or refurbishment step. We em-
phasize that the driving dataset collected for training both
the LbW and baseline models is identical. Yet, the base-
line model only leverages demonstration data that has been
directly observed by the ego-vehicle. In contrast, through
effective cross-perspective reasoning, our method increases
the available training samples with respect to the number of
surrounding agents observed. As such, the baseline’s per-
formance can match LbW asymptotically in principle, i.e.,
through exhaustively driving in various scenes, maneuvers,
and perspectives. This is inefficient and costly in practice.

Integrating the Visibility Map: We sought to understand
the benefits of different model choices in our learning by
watching framework. Here, we analyze the underlying net-
work structure for integrating the visibility map with respect
to the ultimate driving task. Our findings with one hour of
training data highlight the importance of effectively inte-
grating visibility cues with BEV-based cues. Specifically,
we achieve a 92% success rate for the late fusion-based
LbW agent compared to 64% obtained by an agent with-
out a visibility map on NC-Regular. We also nearly solve
the original CARLA benchmark, achieving a 92% success
rate. Early fusion of the visibility map is less successful, as
our visibility cues differ in their function compared to the
positional BEV cues. Thus, our model benefits from an ar-
chitecture with distinct processing for the two types of cues.
It is useful to contrast this finding with the 3D object detec-
tion study of Hu et al. [33], where an early fusion scheme
was found to work best. One reason for this discrepancy
could be due to the differences in the underlying learning
task. In this study, we utilize the visibility cue to encode a
more complex notion of missing cross-perspective informa-
tion when training a driving policy.

Data-Efficiency in Training: Our primary goal is to en-
able researchers to easily train robust driving agents while
minimizing operation and data collection costs. Towards
this goal, in this experiment we deliberately consider an of-
ten neglected aspect of data-efficiency when training driv-
ing policies. Here, to highlight the benefits of our LbW



Table 2: Adaptation Results. Quantitative results for pol-
icy adaptation to novel maneuvers on Town 3.

NC-R NC-D OB

Ego (Baseline) 40± 0 40± 0 60± 0
LbW 60± 1 60± 0 80± 1
LbW + Visibility (Early) 60± 1 60± 1 60± 1
LbW + Visibility (Late) 100± 0 40± 0 100± 0

(a) Ego (Baseline) (b) LbW (Proposed)

Figure 5: Qualitative Adaptation Results. While both
agents leverage the same short adaptation route, the LbW
agent effectively learns entirely new maneuvers solely
through watching them performed by other vehicles. LbW
results in more accurate and safe predicted waypoints.

approach, we use a much smaller amount of driving data
than is generally considered, e.g., 30 and 10 minutes in to-
tal. This is a challenging experiment given that our models
are initialized from scratch. Our key finding in Table 1 re-
veals how our LbW agent outperforms the baseline model
trained with six times the amount of data. For instance, for
NC-Regular test settings, our agent trained with 10 minutes
of data achieves a 52% success rate compares to 46% with
traditional behavior cloning and one hour of data.

Data-Efficiency in Adaptation: We further explore the
practical limitations of our proposed approach by adapting
the driving agent to a town with completely different layout
characteristics and maneuvers. In this realistic scenario, the
agent encounters an environment differing from its original
dataset and must efficiently adapt to the new environment
in order to avoid an unsafe maneuver, e.g., as visualized
in Fig. 5. Here, even a single trajectory watched at an in-
tersection can potentially teach the ego-vehicle an entirely
new maneuver, i.e., turning at a five-way intersection. As
not utilizing such critical data would lead to poor driving
performance on the most complex CARLA town, these set-
tings provide an ideal test case. Table 2 shows how the base-
line model generally struggles to adapt to the new environ-
ment. In contrast, our LbW agent can achieve up to 100%
success rate on NC-Regular driving settings, solely through
watching novel maneuvers being performed by other vehi-
cles. As shown in Fig. 5, the LbW adaptation process results
in improved waypoint predictions for the novel maneuvers.

Table 3: Refurbishment Analysis. Impact of waypoint re-
furbishment on driving success rate (%). Results are shown
using the late fusion visibility integration scheme.

Town 2 NC-R NC-D OB

LbW + Visibility 64± 0 32± 3 86± 1
LbW + Visibility (Refurbishment) 80± 1 36± 0 96± 0

Town 3 NC-R NC-D OB

LbW + Visibility 40± 0 30± 1 60± 0
LbW + Visibility (Refurbishment) 60± 0 40± 0 60± 0

Nonetheless, the conditions on this new town, especially
during dense settings, can create drastically different visi-
bility patterns compared to the ones in Town 1. Hence, we
find that the adaptation of our LbW agent without visibil-
ity cues is more efficient for this difficult task, motivating
future work in learning generalized driving policies.

Robust Policy Learning: Given the analysis on the under-
lying network structure and choice of late fusion scheme,
we now quantify the role of waypoint refurbishment when
handling mislabeled samples inherent to LbW datasets. In
particular, we sought to further analyze our proposed ap-
proach on more general settings, for instance, settings with
a lower quality sensor, algorithm, or map, as such noise can
impact the learning by watching process. To ensure our
findings are relevant across various sensor and algorithm
configurations, we further add waypoint noise into our one
hour dataset when training our models. By improving ro-
bustness, i.e., through adjustment of the training loss, we
show refurbishment to consistently improve driving success
rates in Table 3. Refurbishment leads to further gains of
25%, 13%, and 11% on the NC-Regular, NC-Dense, and
original benchmark settings, respectively.

5. Conclusion

In this work, we have presented the learning by watch-
ing framework. Based on our experiments, we showed that
leveraging supervision from inferred state and actions of
surrounding expert drivers can lead to dramatic gains in
terms of driving policy performance, generalization, and
data-efficiency. While our approach enables learning from
incomplete data and noisy demonstrations, an important
next step would be further validation under such realistic
challenges. For instance, although existing approaches on
CARLA generally assume expert optimality, this assump-
tion may not hold in practice when learning to drive by
watching diverse and imperfect drivers. The complemen-
tarity of the LbW approach to additional sample-efficient
imitation learning approaches, e.g., [6, 36, 29], could also
be studied in the future. More broadly, we hope that our
work motivates others to pursue a more shared and efficient
development of autonomous vehicles at scale.
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