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Abstract—Human drivers continuously attend to important
scene elements in order to safely and smoothly navigate in intri-
cate environments and under uncertainty. This paper develops a
human-centric framework for object recognition by analyzing a
notion of object importance, as measured in a spatio-temporal
context of driving a vehicle. Given a video, a main research
question in this paper is - which of the surrounding agents
are most important? The answer inherently requires complex
reasoning over the current driving task, object properties, scene
context, intent, and possible future actions. Therefore, we find
that various spatio-temporal cues are relevant for the importance
classification task. Furthermore, we demonstrate the usefulness
of the importance annotations in evaluating vision algorithms
(specifically, for the task of object detection) in an application
where trust in automation is imperative and errors are costly.
Finally, we show that importance-guided training of object
detection models results in improved detection performance of
surrounding objects of higher importance. Hence, such models
may be better suited for use in representing safety-critical
situations, predicting surrounding agents’ intentions, and in
human-robot interactivity. The dataset and code will be made
publicly available.

I. INTRODUCTION

Consider the image in Fig. 1(a). Can you try to detect all
of the vehicles in the image? Some of the vehicles in the
proximity of the ego-vehicle are easy to detect while other
vehicles with increased distance, occlusion, and truncation
may be more challenging. On the road, human drivers attend to
only a subset of the on-road occupants which are most relevant
to the current navigation task, given the situational spatio-
temporal context. Motivated by this phenomenon, the goal of
this paper is to learn object importance ranking models which
can automatically predict the importance score of objects in a
driving scene.

Next, please re-consider the image in Fig. 1(a). Although
knowledge of all obstacles is important for obstacle avoidance
while navigating, some objects may require more of a driver’s
attention than others (Fig. 1(b)). For instance, remote objects
may be less relevant than near ones to the immediate navi-
gation task, but other object properties may also play a role.
The answer to the question of what makes an object important
inherently requires reasoning over the current driving task,
object properties, scene context, intent, previous experience,
and expected future actions [2]. Humans rely on situational
awareness in order to continuously analyze the scene and
its salient elements [2], [3], and intelligent and self-driving
vehicles are expected to perform similar reasoning skills for
smooth and safe navigation (as well as earn the trust of their
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Fig. 1: This paper studies on-road object recognition under a
notion of importance. (a) An example frame from a driving
video used in this study (taken from the KITTI dataset [1]).
Annotators/models observe the video and produce object-
level importance annotations as relevant to the navigation
task. (b) Example frame with overlaid object-level importance
(averaged over subjects), colored from high to moderate to
low importance, provided by human annotators.

users). This study is also concerned with learning human-
centric models for scene perception, which can be valuable
to a wide range of applications in computer vision including
saliency [4]–[7], robotics [8], and ego-centric vision [9], [10].

A. Contributions

Our paper makes the following contributions in the im-
portant field of computer vision and pattern recognition for
intelligent vehicles.

Dataset and cue analysis: We collect object-level impor-
tance annotations on KITTI videos [1] from a varied subject
pool. The dataset is used to learn importance ranking models
which provide insights into what makes an object important.
The proposed prediction task allows for evaluating a complex
spatio-temporal reasoning skill in real-world settings, and
a wide range of cues is shown to impact spatio-temporal
prediction of importance. We emphasize that this study is
not concerned with ethical issues in autonomous driving, but
with obtaining a better understanding of the limitations and
requirements for on-road object recognition, safe navigation,
and human-centric AI.
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Fig. 2: (a) The interface used to obtain object-level importance
ranking annotations. The cyclist is highlighted as it is the cur-
rently queried object to annotate, colored boxes have already
been annotated with an importance level by the annotator,
and blue boxes are to be annotated. (b-d) Example frames
in the dataset with overlaid object-level importance (averaged
over subjects). Object type, state, position, orientation, scene
context, and other cues are all shown to play a role in
determining an importance score by annotators.

Importance-guided training and evaluation of models:
Our analysis demonstrates that the large majority of road occu-
pants on the KITTI benchmark [1] are consistently categorized
as low important objects. As highly important objects are rare,
the importance annotations give rise to novel performance
metrics and error/bias analysis in an application where errors
made by an algorithm are safety-critical. Specifically for the
task of object detection, we demonstrate that importance-
guided training can significantly improve detection of highly
important objects. As such joint detection-attention models
are encouraged to emphasize saliency and contextual cues
in detection, they can provide more useful output for driver

assistance and safe navigation tasks. Interestingly, we show
that such an important insight would have been difficult
to identify with traditional detection performance evaluation
metrics.

II. IMPORTANCE ANNOTATIONS COLLECTION

The KITTI dataset [1], [11] is widely used for evaluating
a variety of vision tasks for autonomous driving, including
object detection and tracking. We supplement the object anno-
tations with an object importance label. In addition to image-
level tracklet annotations of road occupants (pedestrians, cy-
clists, and vehicles), KITTI provides a rich set of other modal-
ities and semantic object attributes, including a 3D box and
orientation (annotated in the LIDAR data), IMU/ego-vehicle
dynamics, GPS, and an occlusion state. The sensorization and
annotation makes KITTI an ideal dataset for studying cues
related to importance in driving settings.

Importance annotations: Experiments were done in a
driving simulator with KITTI videos shown on a large screen.
A set of 8 videos was selected for annotation. Subjects initially
watched each video twice, and then annotated every 10th frame
by providing an object-level integer between 1-3 (1 being high
and 3 being low importance). A visualization of the annotation
interface is shown in Fig. 2. The choice of three importance
levels was chosen in order to reduce ambiguity as much
as possible without overly restricting the experiments. For
instance, allowing for only two levels (yes/no) of importance
is somewhat restrictive as there may be ambiguous cases
where a decision can’t be confidently made. Furthermore, it
is reasonable to expect that some objects will fall under a
middle between high and low importance. On the other hand, a
continuous ranking score may have been used, but could have
lead to large confusion among subjects and more guessing,
which we aimed to reduce. Subjects were asked to imagine
driving under similar situations, and mark objects by the level
of attention and relevance they would’ve given the object under
real driving.

Fig. 3 visualizes the output provided by the subjects.
Although the instructions were kept fixed among the experi-
ments, the resulting annotations contained variations due to the
task’s inherent subjectivity. Upon a closer inspection, we found
a strong correlation between annotation output and subject
driving experience. Interestingly, greater driving experience
implied a higher percentage of moderate and high importance
annotations (Fig. 3(b)). Subjects reported inspecting object
orientation (useful for knowledge of future activities [12]),
relative position, existence of traffic barriers, and relationship
among objects for determining the importance label. We note
that despite the subjective nature of the task, a subset of the
annotated objects does contain high consistency. For instance,
scenarios of dense scenes with tens of road occupants that are
heavily occluded or are across a barrier consistently generated
low importance annotations. This applies to a large number of
objects in KITTI. Three importance classes are obtained and
used throughout the paper by taking the median vote among
subjects for each sample. The dataset used in the experiments
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Fig. 3: (a) Object type distribution per subject (a subset of
12 out of the 18 total), color coded from high to moderate
to low importance. (b) Annotations were shown to correlate
with subject’s driving experience (in years). Each subject is
represented by a differently colored dot in the plot.

contains 17,635 object annotations, out of which 15,057 are
vehicles (cars, vans, and trucks), 1,452 pedestrians, and 562
cyclists. Out of these totals, there were high/moderate/low
importance (by median vote among subjects) 293/2159/12,605
vehicles, 143/524/785 pedestrians, and 267/147/148 cyclists.
High important objects were generally shown to be not oc-
cluded and within 40 meters or less of the ego-vehicle. As can
been observed from the collected statistics in Fig. 3, objects
ranked as high importance are rare.

III. OBJECT IMPORTANCE MODEL

We continue with our aim to better understand object
importance in the context of driving using a classification
study. As mentioned in Section II, KITTI contains a set
of object attributes which can be investigated for relevance
to importance prediction. These are obtained either from
annotation or from additional modalities (LIDAR, GPS, etc.).
Nonetheless, the ultimate goal is training visual prediction
models for object importance. Hence, we experiment with two
types of models, Mattributes and Mvisual, which we’ll define
next. The weights for the models are learned using a logistic
regression classifier.

A. Object attributes model, Mattributes

For an instance s and class importance c ∈ {1, 2, 3}, we
train the following prediction model

Mattributes(s) = wT
c,2D−objφ2D−obj(s)+

wT
c,3D−objφ3D−obj(s) + wT

c,egoφego(s)+

wT
c,temporalφtemporal(s)

(1)

where each term is defined below.
2D object features: After projection of the annotated 3D

object box to the image plane, the φ2D−obj ∈ R4 features
are the concatenation of the height in pixels, aspect ratio,
occlusion state (either none, partial, and heavy occlusion) and
truncation percentage.

3D object features: φ3D−obj ∈ R6 is composed of the
3D left-right and forward-backward range coordinates (x, z)
given by the LIDAR, Euclidean distance from the ego-vehicle,
orientation in bird’s eye view, and object velocity components,
|V | and ∠V .

Ego-vehicle features: Since ego-vehicle speed may im-
pact which objects are considered important and this infor-
mation is presented to the annotators, the attribute model
includes ego-vehicle velocity and orientation features φego =
[ego|V |, ego∠V ].

Temporal attributes: We hypothesize that past information
has an influence on driver expectation as to what is happening
and will happen next. Hence, temporal evolution of attributes
may contain relevant information for importance ranking. This
assumption is captured in φtemporal, where the object and ego-
vehicle attributes described above are concatenated over a past
time window. Additionally, max-pooling over the time window
and the Discrete Cosine Transform (DCT) coefficients [13] are
also included in computing φtemporal.

B. Visual cues model, Mvisual

Given the 2D bounding box annotation of objects in video,
we propose a visual prediction model for mapping an image
region to an importance class,

Mvisual(s) = wT
c,objφobj(s) + wT

c,spatialφspatial(s)+

wT
c,temporalφtemporal(s)

(2)

Object visual features: For φobj ∈ R4096 features, we
employ the activations of the last fully connected layer of
the OxfordNet (VGG-16) [14] convolutional network. The
network was pre-trained on the ImageNet dataset [15] and
fine-tuned on KITTI using Caffe [16].

Spatial context features: In order to better capture spatial
context, such as relationship with other objects in the scene or
occlusion state, each object instance is padded by an amount
of ×1.75 for generating φspatial ∈ R4096.

Temporal context features: Given an object tracklet of
box positions and a temporal window, temporal φtemporal

features are extracted. The previous object and spatial context
features, φobj and φspatial, are computed over a time window,
concatenated, and max-pooled.
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IV. EXPERIMENTAL EVALUATION OF IMPORTANCE
MODELS

For each of the three importance classes, a precision-
recall curve is computed and the area under the curve (AP)
provides a summary metric for classification quality of the
model. Finally, AP is averaged over the three important classes
(mAP) for an overall classification quality metric (higher mAP
value implies better classification performance). We note that
by treating each importance class as a separate class, the
proposed evaluation procedure handles the large imbalance
in sample size of the importance classes. The dataset is split
approximately in half for a 2-fold cross validation. The split
is such that no samples from the same video are used for both
training and testing.

Analysis of Mattributes: Table I shows the results of
the classification experiments with varying combinations of
features and an object class-agnostic importance prediction
model. As Mattributes employs clean annotation (occlusion
state, truncation level using ground truth 3D boxes, etc.) and
sensor data, it provides a strong classification baseline. In
addition to providing a comparison with Mvisual, it is also
useful for analysis of cue relevance. Fig. 4(a) shows the
classification power of each of the features and a combination
of all, which leads to a performance of 53.70% mAP. We
note that the training and testing sets are different for each
of the object classes in Fig. 4(a), either limited to a specific
object class or over all objects shown in the ‘All’ category.
When training a class-agnostic model, all object classes are
treated as one and selected cues for importance prediction
must be learned such that they generalize over the different
object classes. For the vehicle object class, occlusion state
is shown to be a strong cue when determining an object’s
importance class. This is to be expected, as occlusion by
another object may generally reduce the object’s importance
class. Nonetheless, a combination of the occlusion state with
the other attributes provides a better representation of the
object’s importance class (increasing mAP from 47.15% to
53.70%). Vehicle orientation is also shown to be particularly
useful when considering the vehicle object class, as it relates to
traffic direction and future action. 2D object properties, such as
height in pixels, are important as they are related to distance
perception. For the pedestrian object class, occlusion state,
longitudinal placement, and distance from the ego-vehicle are
all shown to be particularly useful in predicting importance.
The patterns for the cyclist object class are less clear as
it contains a smaller number of object samples, yet similar
observations hold.

Table I also demonstrates the impact of temporal cue
modeling for importance class prediction. When considering a
class-agnostic model, the temporal window features are shown
to improve performance over a window of up to 2.5 seconds.
Incorporation of φtemporal leads to a significant classification
improvement, from 53.70% to 60.35%. Therefore, a good
temporal context model is essential for the task of impor-
tance prediction. On the vehicle object class, incorporation of

TABLE I: Summary of the classification experiments using
the two models discussed in Section III.

Model mAP (%)
Mvisual(φobj) 51.06

Mvisual(φobj + φspatial) 55.53
Mvisual(φobj + φtemporal) 53.30

Mvisual(φobj + φspatial + φtemporal) 56.34
Mattributes (w/o φtemporal) 53.70
Mattributes (with φtemporal) 60.35
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Fig. 4: (a) Impact of each attribute (and all combined) on
object importance classification using Mattributes. (b) Explicit
limitation analysis by employing Mvisual with various feature
combinations for individual attribute regression and conse-
quent importance class classification. See Section III-A for
attribute definitions.

temporal attribute features leads to the largest improvement,
from 48.49% to 56.18%. For the pedestrian object class, the
performance significantly improves as well, from 36.20% to
40.09%. The improvement for the cyclist object class is minor,
but obtaining further instances is required for drawing reliable
conclusions.

Analysis of Mvisual: The analysis of Mattributes revealed
which cues are useful for importance prediction. The visual
prediction model must also be able to accurately capture
object attributes, including object occlusion state, orientation,
and distance from the ego-vehicle. The φobj baseline, of
importance classification using a local object window, provides
a performance of 51.06%. While the network is able to capture
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TABLE II: Evaluation of object detection models (average-precision) using the proposed set of importance metrics and the
Faster-RCNN framework (FRCN) [17]. ‘IG’ stands for importance-guided cost-sensitive training.

Traditional Test Settings Importance Test Settings
Method Easy Moderate Hard High High+Moderate Low
FRCN-ZF 89.26 79.70 64.96 66.89 82.80 58.85
FRCN-ZF-IG 91.09 80.86 66.18 73.00 87.19 59.90
∆AP +1.83 +1.16 +1.22 +6.11 +4.39 +1.05
FRCN-VGG 95.63 88.98 74.65 81.73 91.60 69.54
FRCN-VGG-IG 94.54 88.71 74.01 85.13 91.67 69.09
∆AP -1.09 -0.27 -0.64 +3.40 +0.07 -0.45

local information regarding occlusion and orientation, it can’t
fully capture the situational spatio-temporal context. We’ve
experimented with several techniques for cue extraction in
order to improve this baseline, and Table I lists two successful
choices. First, we experimented with increasing the object box
size for including surround context. Although commonly done
for the task of object detection [18], [19], the impact on impor-
tance ranking needs to be studied. The assumption here is that
certain attributes may become more easily recognizable with
this increased box size, while also allowing for better scene
and object-object relationship representation. Consequently,
φobj + φspatial improve performance over the baseline by a
significant 4.47 mAP points, revealing insight as to the type
of cues used by human annotators when ranking objects. As
temporal features where shown to have a large impact on mAP
in the case of Mattributes, temporal reasoning is expected to
benefit the Mvisual model as well. Incorporation of temporal
features results in an improvement of 2.24 mAP points for
φobj +φtemporal over the φobj baseline, and 0.81 mAP points
when spatial context is included as well. Although the visual
prediction model performance are impressive, it falls short of
the attribute prediction model (see Fig. 4(b)). This motivates
further study of models suitable for capturing spatio-temporal
visual cues as a next research step [20]–[23].

V. IMPORTANCE-GUIDED EVALUATION AND TRAINING

Next, we demonstrate the usefulness of the importance
annotations in the training and evaluating of object detection
models. The analysis provides insights into the collected
dataset as well as into the limitations of currently employed
evaluation metrics. In particular, we demonstrate how two ob-
ject detection models which perform similarly when compared
with traditional metrics (importance-agnostic) can significantly
vary in their ability to detect objects of high importance.
Hence, the main goal of this section is error type analysis.
Furthermore, the analysis motivates training joint detection-
attention models which are better at detecting objects of high-
importance, and therefore may be more suitable for use in
analyzing the intentions of surrounding agents.

A closer look at the dataset visualization figures (Figs. 1,
2, and 3) demonstrates how many of the KITTI objects are
consistently ranked under the low importance category while
high importance objects are rare. This fact raises concerns
regarding non-biased evaluation of vision tasks.

Motivating importance metrics for object detection: Tra-
ditional evaluation on vision datasets (PASCAL [24], Caltech
[25], KITTI [1], etc.) separate objects by size, occlusion, and
truncation. Specifically for KITTI, three evaluation procedures
of ‘easy’ (above 40 pixels in height, truncation under 15%),
‘moderate’ (above 25 pixels in height, with partial occlusion,
truncation under 30%), and ‘hard’ (with heavy occlusion and
truncation under 50%) are employed. In all the aforementioned
datasets, challenging instances of size, occlusion, and trunca-
tion are often entirely excluded from training/evaluation, yet
these choices are arbitrary in the context of driving where such
instances may be potentially relevant to safety-critical events
(e.g. a highly truncated vehicle which is overtaking the ego-
vehicle). This motivates evaluation on importance classes for
providing complementary analysis to the traditional metrics.
The importance metrics can also reveal dataset bias, as the
rarity of high importance instances may bias models both
in training and evaluation. Specifically, in training time, the
model may emphasize visual attributes found in the most com-
mon objects (e.g. vehicles of low relevance), and evaluation
with traditional metrics may not reveal such bias.

Importance-guided training: As a final experiment, we
employ the Faster-RCNN [17] framework for training a vehicle
detector on KITTI. First, fine-tuning is performed on an aux-
iliary dataset of KITTI objects taken from videos not used in
the importance prediction experiments. Next, we continue fine-
tuning on the importance dataset (performed twice for each
fold in the cross validation), but modify the loss function from
[17] to weigh objects of higher importance more heavily. We
refer to this training process as ‘importance-guided’ training.
The process is performed both for the ZF [26] and VGG
network architectures. In all test settings, an overlap of 0.7
is required between a predicted and a ground truth box for a
true positive. Furthermore, images are up-sampled by a factor
of 2.6 in training and testing, which we found necessary for
detection of smaller objects.

Analysis with importance metrics: The results of the
experiments for object detection are shown in Table II. Several
conclusions can be drawn from the analysis. While impor-
tance metrics may be correlated with traditional, importance-
agnostic metrics, the two types of metrics contain comple-
mentary information. For instance, comparing easy and high
importance test settings, or hard and low importance test
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settings, the overall AP numbers differ. The low importance
category is shown to be particularly challenging. Furthermore,
the importance test settings contain vehicles with higher trun-
cation ratio than the hard test settings.

The deeper VGG model is shown to significantly improve
over the ZF model in all test settings, but the main takeaway
is demonstrated by inspecting the difference in AP (∆AP)
between importance-guided and importance-agnostic training
and evaluation. As shown in Table II, importance test settings
are essential for measuring improvement in detection perfor-
mance over objects of higher importance, which is otherwise
not clear. For instance, the ZF-IG model achieves an AP
of 87.19% on high and moderately important objects, an
improvement of 4.39 AP points over the importance-agnostic
baseline. On the other hand, the performance improvement
when employing traditional test settings is minor. A similar
observation holds for the VGG-IG model. Importance-guided
training specifically targets visual challenges and appearance
patterns of objects of higher importance, thereby significantly
improving the detection performance for such objects. This
experiment demonstrates the feasibility of employing the col-
lected importance annotations for evaluating vision tasks, as
traditional and importance metrics are shown to be comple-
mentary.

VI. CONCLUDING REMARKS

This paper analyzed the task of video-based importance
prediction using a variety of multi-modal spatio-temporal
cues. To that end, a human-centric object-level importance
annotations dataset was collected for KITTI videos. Two
types of models were used to perform in-depth analysis into
what types of cues make an object important. In addition to
subtle object-level cues, such as object occlusion state and
orientation, temporal dynamics of a proposed set of multi-
modal situation attributes were shown to be crucial for object
importance classification. Moreover, we demonstrated how the
collected annotations can be useful when evaluating vision
tasks, in particular for object detection performance evaluation.
The experimental analysis uncovered the role of dataset bias
and motivated training cost-sensitive object detection models
which are better at detecting objects of higher relevance to
the driving task. In the future, we would like to further study
spatio-temporal visual modeling for the purpose of importance
prediction [20], [22], analyze generalization and importance
in other contextual settings, such as U.S. highways [27],
and research the usefulness of the importance annotations
for other vision tasks on KITTI. Another future direction
is in developing subject-specific scene perception models, as
motivated by the demonstrated relationship between subject
personal attributes (e.g. driving experience) and importance
perception.
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