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Abstract—This paper highlights the role of humans in the
next generation of driver assistance and intelligent vehicles.
Understanding, modeling, and predicting human agents are
discussed in three domains where humans and highly automated
or self-driving vehicles interact: 1) inside the vehicle cabin, 2)
around the vehicle, and 3) inside surrounding vehicles. Efforts
within each domain, integrative frameworks across domains, and
scientific tools required for future developments are discussed to
provide a human-centered perspective on research in intelligent
vehicles.

Index Terms—Intelligent vehicles, human intent and behav-
ior analysis, human-robot interaction, driver assistance, highly
autonomous vehicles, vehicle-driver hand-off, risk forecasting,
pedestrian/vehicle tracking, cognitive engineering.

I. INTRODUCTION

THERE is an unprecedented interest, activity, and ex-
citement in the field of intelligent vehicles. In a great

technological milestone, the culmination of research efforts
of the past decades in a broad range of disciplines, includ-
ing vehicle control, robotics, sensing, machine perception,
navigation, mapping, machine learning, embedded systems,
human-machine interactivity, and human factors, has realized
practical and affordable systems for various automated features
in automobiles [114]. This advancement is opening doors
to possibilities only thought to be fictional a few decades
ago. The aim of this work is to recognize the next set of
research challenges required to be addressed for achieving
highly reliable, fail-safe, intelligent vehicles which can earn
the trust of humans who would ultimately purchase and use
these vehicles.

It is clear that automobile industry has made a firm
commitment to support developments towards what can be
seen as “disruptive” transformation of automobiles driven by
human drivers to intelligent robots who transport humans on
the roads. What will then be the role of humans in such
a rapidly approaching future? Would they seat as passive
occupants, who fully trust their vehicles? Would there be a
need for humans to “take over” control in some situations
either triggered by the need perceived by the autonomous
vehicle or desired by someone in the cabin? How should these
autonomous vehicles interact with humans outside the vehicle
(either as drivers of non-autonomous vehicles, pedestrians,
emergency workers, etc.)? Because the future of intelligent
vehicles lies in the collaboration of two intelligent systems,
one robot and another human, this study aims to present
core research ideas as they relate to humans in and around
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vehicles. In this collaboration of human and robot, the need
for intelligent vehicles to observe, understand, model, infer
and anticipate human behavior is necessary now more than
ever.

This paper follows three main domains where humans and
highly automated or self-driving vehicles interact (illustrated
in Fig. 1):

• Humans in vehicle cabin: Whether the humans in the
vehicle cabin are active drivers, passengers, or passive
drivers, they may still be required to “take over” control
in some situations triggered by the perceived need of the
autonomous vehicle (for instance, under rare situations
such as construction zones or police controlled intersec-
tions). In such situations, looking at the humans inside the
vehicle cabin is necessary to access readiness to take over.
If active drivers, are they distracted, did they pay attention
to objects of interest (e.g. traffic signs, pedestrians), are
they fatigued? If passengers, are they sitting properly (e.g.
for proper airbag deployment in case of emergency), are
they giving directions, are they distracting the driver?
If passive drivers, in the case of automated vehicles
requiring take over at crucial moments, are they engaged
in a secondary task, are their hands free, have they been
alert to the changing driving environment?

• Humans around the vehicle: In addition to monitoring
humans inside the vehicle cabin, observing humans in
the vicinity of the intelligent vehicles is also essential
for safe and smooth navigation. Because the road is
shared with pedestrians, both an automobile driven by
humans or intelligent robots who transport humans must
be able to sense pedestrian intent and communicate with
pedestrians. Where and how are humans around vehicle
interacting with the vehicle? These include pedestrians,
bike riders, skate boarders, traffic controllers, construc-
tion workers, emergency responders, etc. Are they in
the path of the vehicle? Are they communicating their
intent via body gestures? Are they distracted? Addressing
such research issues can result in improved quality of
navigation and assistance.

• Humans in surrounding vehicles: Intelligent vehicles
must take into consideration humans in surrounding ve-
hicles. Activity analysis and observation of intent applies
to such humans as well, which operate under specific
experience level, aggressiveness, style, age, distraction-
level, etc. For instance, imagine two intelligent vehicles
arriving at a stop-controlled intersection. In such a situ-
ation, both vehicles may be fully autonomous, only one
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Fig. 1: Intricate roles of humans to be considered in the development of highly automated and self-driving vehicles. For a safe
and comfortable ride, intelligent vehicles must observe, understand, model, infer, and predict behavior of occupants inside the
vehicle cabin, pedestrians around the vehicle, and humans in surrounding vehicles.

of the vehicles may be fully autonomous, or both may
be human-operated. Observing the humans by direct or
indirect observation is necessary to acknowledge or give
right of way. Are the humans in other vehicles driving in
a risky manner? Is their behavior normal or abnormal?
What will they do next, and what general and user-
specific cues can be leveraged towards this identification?
Are they acknowledging right of way at stop-controlled
intersection? Are they engaged in secondary tasks, which
motivates the ego-vehicle to avoid its vicinity?

We continue by providing an overview of relevant research
studies. The studies are categorized in Section II for providing
a highlight of the current research landscape. Section II studies
emerging research topics in vision-based intelligent vehicles
for each of the domains where humans and highly automated
or self-driving vehicles interact. Section III follows with an
analysis of the publicly available vision tools required for
addressing the highlighted research issues. Finally, summary

and conclusions are provided in Section III.

II. LOOKING AT HUMANS IN AND AROUND THE VEHICLE:
RESEARCH LANDSCAPE AND ACCOMPLISHMENTS

The study of human-centric cues for driver assistance is an
active research topic in intelligent vehicles, machine learning,
and computer vision. Therefore, an extensive amount of work
has been done in the field, from analysis of driver goals and
intentions, human-machine interface design and customization,
pedestrian activity classification, and up to identification of
surrounding aggressive drivers (Fig. 1).

As means of identifying research trends, our first step is
to give an overview of selected studies employing computer
vision and machine learning techniques for intelligent vehicles
applications. In order to maintain focus over the a large
research landscape, the following approach for clustering
research studies is pursued:
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Fig. 2: Trends in human-centric intelligent vehicle research. The figure visualizes related research studies discussed in this
paper as they relate to different semantic goals, from maneuver analysis and prediction, to style modeling. Each topic size is
proportional the count of studies surveyed it contains.

• Domain clustering: Throughout the paper we partition
the research space based on the three domains in Fig. 1,
of humans inside the vehicle, around, and in surrounding
vehicles. Although all three domains share the human
agent, the domain-based clustering is useful because
studies tend to focus on one of the three domains. From
a vision perspective, methodologies and research goals
among papers within the same domain tend to be more
similar. Domain clustering also allows comparing and
contrasting the domains in terms of what has been done
and what has yet to be achieved.

• Research goal clustering: Related studies generally at-

tempt to analyze, model, classify, and/or predict activ-
ities. This suggests a clustering based on the research
task, whether humans inside or outside of a vehicle are
concerned. We select seven types of overall research
goals found in the surveyed studies. This clustering is
employed for gaining a deeper understanding of the re-
search landscape and discussing potential future research
directions. Research goals include agent intent analysis
and activity prediction (what will happen next?), attention
model (where and what is the focus of the agent?), skill
and style (what type of agent?), alertness and distraction
(what is the state of the agent?), and general activity

3



IEEE Transactions on Intelligent Vehicles Vol. 1, No. 1, 2016

TABLE I: Overview of human-centric related research studies by research goal and human-centric cues employed. Goal types
follow Table II, with [I] - intent and prediction, [Ac] - activity and behavior understanding, [D] - distraction and alertness, [At]
- attention, and [S] - skill and style. VD refers to Vehicle Dynamics. PD refers to Pedestrian Dynamics (i.e. position, velocity).

Study Type Goal Detail Cue Type
Jain et al. [51, 112], 2016 I Lane Change Prediction Head, Lane, VD, GPS, Map
Tran et al. [15], 2012 I,Ac Brake Foot, VD
Lefèvre et al. [49], 2011 I Intent at Intersections Map, VD
Molchanov et al. [13, 17], 2015 Ac Secondary Tasks/Infotainment Hand, Video
Ohn-Bar et al. [9] [16] 2014 Ac Secondary Tasks/Infotainment Head, Hand, Eye, Image
Tawari et al. [14] [25], 2014 Ac,At Gaze Zone Head, Eye
Toma et al. [2], 2012 Ac Secondary Tasks/Phone Head, Image
Ahlstrom et al. [11], 2012 Ac Gaze Zone Head, Eye
Cheng and Trivedi [18], 2010 Ac Driver/Passenger Classification Hand, Image
Vicente et al. [24], 2015 At Gaze Zone Head, Eye, Image
Liu et al. [23], 2015 D Distraction Detection Head, Eye
Jimnez et al. [21], 2012 D Gaze Zone Head, Eye
Wllmer et al. [20], 2011 D Distraction Detection Head
Lefèvre et al. [30], 2015 S Style VD
Schulz et al. [70, 71], 2015 I,Ac Pedestrian Intent Recognition PD, Head
Møgelmose et al. [67], 2015 I Pedestrian Risk Estimation PD, GPS, Map
Madrigal et al. [65], 2014 I Intention-Aware Pedestrian Tracking PD, Social Context
Kooij et al. [73], 2014 I Pedestrian Path Prediction PD, Head, Situation Criticality, Scene Layout
Quintero et al. [66], 2014 I,Ac,S Pedestrian Path Prediction PD, Body Pose, Subject Style
Goldhammer et al. [63, 77], 2014 I,S Pedestrian Path and Gait Analysis PD, Head
Pellegrini et al. [113], 2009 I Pedestrian Path Prediction PD, Social Context
Kooij et al. [75], 2016 Ac Pedestrian Behavior Patterns PD
Kataoka et al. [79], 2015 Ac Pedestrian Activity Classification PD, Video
Choi and Savarese [76], 2014 Ac Pedestrian Activity Classification PD, Social Context
Li et al. [84], 2016 I,Ac Car Fluents Video, Vehicle Part State
Laugier et al. [91], 2011 I Behavior and Risk Assessment VD, Lane, Turn Signal, GPS
Fröhlich et al. [88], 2014 I Lane Change Intent Turn Signal
Graf et al. [89], 2014 I Turn Intent VD, GPS, Map
Bahram et al. [104], 2016 I Interaction-Aware Maneuver Prediction VD, GPS, Map
Ohn-Bar et al. [102], 2015 I Overtake and Brake Prediction Head, Hand, Foot, VD, Lane
Jahangiri et al. [85], 2015 I Intent to Run Redlight VD, Scene Layout
Gindele et al. [87], 2013 I Contextual Path Prediction VD, Map, Lanes
Doshi et al. [101], 2011 I Lane Change Forecasting Head, Lane, VD
Aoude et al. [90], 2010 I Threat Assessment VD, GPS, Map, Lanes
Tawari et al. [111], 2014 At Attention and Surround Criticality Head, VD, Lane
Bar et al. [107], 2013 At Seen/Missed Objects Head, Eye, VD, Image
Mori et al. [108], 2012 At Surround Awareness Head, Eye, VD
Takagi et al. [110], 2011 At Gaze Target Head, Eye, VD
Doshi and Trivedi [105], 2010 At Attention Focus Head, Video
Phan et al. [97], 2014 At Awareness of Pedestrians VD
Tanishige et al. [98], 2014 At Pedestrian Detectability Head, Eye, PD, Video
Tawari et al. [99], 2014 At Driver and Pedestrian Attention Head, Eye, PD

Color codes:
Studying humans inside cabin.
Studying humans around vehicles.
Studying humans in surround vehicles.
Studying humans inside cabin and in surround vehicles.
Studying humans inside and around vehicles.

classification and behavior analysis (how is the agent
operating?). Two additional goals not falling into the
previous categories are autonomy handover and privacy-
related tasks. We emphasize that the chosen research
goals are closely related to each other and that there are
other potential choices for research goal clustering [117].
Depending on the study, it may fall into one or multiple
of the research goals. The research goals are consistent
with topics in machine vision and learning-based studies
as related to the type of data, methodologies, and metrics
employed.

• Cue type analysis: A third type of analysis for highlight-
ing trends in related studies can be made based on the

type of cues employed in the study. We make a distinction
between studies employing direct human-observing cues
(e.g. body pose) and indirect cues (e.g. vehicle dynamics,
GPS). This is shown in Table II. Furthermore, we detail
the specific type of cues employed by selected studies
in Table I, which complements the other two clustering
techniques described above.

Fig. 2 shows a domain-based and research goal-based clus-
tering of the papers listed in the corresponding Table II. An
emphasis is put on recent studies (mostly after 2008). In Fig. 2,
the size of the node is proportional to the number of studies
it contains. Fig. 2 can be used to draw several conclusions.
We first identify trends, and then discuss further detail of the
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TABLE II: Overview of selected studies discussing different
aspects of humans on the road. Methods are categorized
according to task and whether humans were observed directly
(e.g. body pose cues) or indirectly (e.g. pedal press, GPS/Map,
vehicle trajectory).

Goal Direct Indirect
Intent and Prediction
- In Vehicle [15, 16, 50, 51] [49, 52–61]
- Around Vehicle [62–74] -
- Surrounding Vehicles - [84–91, 93]
- In+Surrounding Vehicles [100–103] [92, 104]
Activity
- In Vehicle [2–4, 9–19, 44,

48, 115]
[5–8, 28]

- Around Vehicle [66, 70, 75–80] -
- In Surrounding Vehicles - [84, 92, 95, 96]

Distraction and Alertness
- In Vehicle [20–23] -

Attention
- In Vehicle [24, 25] -
- In+Around Vehicle [97–99] -
- In+Surrounding Vehicles [105–108, 110,

111]
-

Skill and Style
- In Vehicle [27] [26, 28–42, 116]
- Around Vehicle [66, 77, 81] -
- In Surrounding Vehicles - [94]
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Fig. 3: Overview of the sensing and learning pipeline com-
monly used to study humans in the cabin.

studies in each domain in the following sections (Section II-A,
II-B, II-C).

As might be expected, a large number of human-centric
studies emphasize humans inside the vehicle. This domain also
contains most of the diversity in terms of research goals, but
research efforts are not distributed equally. A large number
of behavior and activity analysis studies on driver gestures,
secondary tasks, distraction, and maneuver classification and
prediction have been performed. In-vehicle study of activities
allows for a fine sensor resolution of the human agent, from
vehicle dynamic sensors and up to eye and gaze analysis.
The studies in this cluster still vary drastically in terms of
the type of cues and vision techniques employed, as shown
in Table I. Certain research tasks, such as skill and style of
humans, in-vehicle occupant interaction, and activity analysis
of passengers, has seen less attention.

Fig. 2 allows for a high-level comparison between the do-
main of looking at humans inside the vehicle and the other two

Fig. 4: A multi-sensor driver gesture recognition system with
a deep neural network [13].

domains. Although human drivers can analyze fine-grained
pose, style, and activity cues for identification of agent intent
in all three domains (see Fig. 1), fine-grained semantic analysis
around and in surrounding vehicles is still in early stages.
Looking at humans around the vehicle commonly involves
path prediction and to a lesser extent activity classification.
Trajectory level path prediction is often done with little notion
of skill, style, social cues, or distraction. Future improvement
in camera and sensing modalities would provide access to
better and larger datasets. Consequently, we expect research
tasks in the less studied two domains to become more diverse
as in the looking inside the vehicle domain. Direct observation
of humans in surrounding vehicles has not been done, although
humans employ it everyday on the road.

Another main conclusion that can be drawn relates to
integrative schemes, which are also shown to be studied to
a lesser extent. The studies are limited to attention-related
studies as these reason over objects around the vehicle in
order to infer surround awareness and gaze target. On the
road, holistic understanding of both humans inside, around the
ego-vehicle, and in surround vehicles is essential for effective
driver assistance and higher vehicle autonomy. Holistic under-
standing of all three domains is a task performed by everyday
human drivers while inferring intents, analyzing potential risk,
and smoothly navigating a vehicle [119, 120]. Another relevant
research topic is the modeling of social relationships among
agents, which are employed by drivers in order to recognize
and communicate intents. More specific examples can be
found in Section II-D.

Fig. 2 and Table II provide a high-level analysis of trends
in related research studies within domains and research goals.
Certain research goals are shown to be highly represented in
one domain, but almost none existent in another. Nonetheless,
even within a certain domain of human study, large variations
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(a) Gaze zone classification using head cues [25].
(b) Object interaction analysis

and secondary task classification with hand cues [118].

(c) Head, hand, and eye cue integration
for secondary task activity analysis [9, 115]. (d) Cabin occupant activity and interaction analysis.

Fig. 5: Emerging research topics for studying humans inside the vehicle.

(a) Foot motion tracking.
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(b) Activity state model.

Fig. 6: Foot gesture recognition and prediction using a motion
tracker and a temporal state model, such as a Hidden Markov
Model [15].

exist in the types of cues employed for a specific task. Table I
provides a closer look to the type of human-observing cues
employed in the surveyed studies.

Next, we provide a deeper discussion for each domain as
well as integrative frameworks below.

A. Looking at Humans in the Cabin

The surveyed papers in Fig. 2 show large diversity in
terms of the research tasks for studying humans inside the
vehicle. Further detail is provided in Table I in terms of
study details and cue analyzed. A highlight of the research
tasks is shown in Fig. 5, with an example research pipeline
in Figs. 3 and 4. Dynamics of driver body pose, such
as head [25], hand [16], eye [21], and foot [15] (Fig. 6)
can be employed for in-cabin analysis of secondary tasks
[2, 9, 11, 14, 24, 123, 124] and intent modeling and maneuver
prediction [16, 49–51, 103]. Certain types of secondary tasks,
such as gaze zone estimation and head gesture analysis, are
more commonly studied than others, such as driver-object
interaction (e.g. infotainment analysis [9] and cell-phone use
[2]). Although passenger-related secondary tasks were shown
to be critical for driver state monitoring from naturalistic
driving studies [125], there are very few vision and learning
studies on such tasks. Driver and passenger hand gesture and
user identification have been studied in [18, 126, 127], but a
large number of research tasks relating to interaction activity
analysis has not been pursued. Fig. 5 highlights the need for
the understanding and integration of multiple cues at different
levels of representation. Such holistic modeling is essential
for accurate, robust, and natural human-machine interaction.
In particular, for studying humans in the cabin under semi-
autonomy and control hand off [43, 45–47]. Depth sensors
may also be used for improved activity recognition [118, 128–
130].

Looking inside the vehicle often involves multiple types
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(a) Pedestrian body pose and attribute classification [121]. (b) Pedestrian path and intent prediction [72, 74].

crossing waiting 

(c) Fine-grained pedestrian activity classification. (d) Social relationships modeling [76, 78, 122].

Fig. 7: Emerging research topics for studying people around the vehicle.
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Fig. 8: Pedestrian path prediction using a Dynamic Bayesian
Network for incorporating contextual cues of pedestrian head
orientation and situational awareness, situation criticality, and
spatial layout cues [73].

of on-board sensors in addition to a camera, such as vehicle
dynamics [5–7, 31–33], phone [8, 29, 34–41], or GPS [26,
28, 52, 53, 55–59]. These provide another useful modality for
analyzing the behavior of humans inside the vehicle, such as
skill and style recognition from inertial sensors [28]. Velocity,
yaw-rate, and other vehicle parameters provide a signal useful
for intent and maneuver recognition [52, 53, 56, 57]. GPS
and map data can provide scene context (e.g. intersection vs.
highway), strategic maneuver analysis [131, 132], or be used in
tactic and operation prediction models [52, 133]. In Liebner et
al. [52] turn and stop maneuvers at intersections are predicted
using GPS trajectories and a Bayesian Network for modeling
driver intent.

B. Looking at Humans Around the Vehicle

Humans around the vehicle can be sensed with a variety of
vision sensors, including color, thermal, and range sensors.
Table I demonstrates a variety of research goals and cues
employed to study pedestrians, with a highlight of research
tasks shown in Fig. 7. The task of analyzing surround pedes-
trians is related to the heavily-studied visual surveillance
tasks of scene and activity modeling [122]. In this work,
we emphasize studies performed from movable platforms and
leverage the specific geometrical and contextual cues induced
by on-road settings. Here, scene information such as lane and
road information can be combined with pedestrian detection
and tracking for performing intent-aware path prediction and
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Trajectories 

Clustered Trajectories Behavior Analysis 

Hierarchical Learning 

Fig. 9: Activity analysis of people in surrounding vehicles. In [94], a hierarchical representation of the trajectory dynamics
is used to perform behavior analysis of vehicle motion patterns. A Hidden Markov Model is used to perform trajectory
classification and detect abnormal trajectory events.

no flashing           flashes left 

Fig. 10: Intent detection using turn signal analysis [88]. First,
vehicles are detected and tracked using a Mixture-of-Experts
model and a Kanade-Lucas-Tomasi tracker. Consequently,
light spots are detected, and classification of events is per-
formed with an AdaBoost classifier over frequency-domain
features.

activity classification [63, 65–67, 70, 71, 73–78]. Map infor-
mation and vision-based pedestrian tracking are employed in
[67] for risk estimation of pedestrians around a vehicle. Body
pose and head pose cues can be used to infer pedestrian intent
to cross and predict path [68, 73, 74, 134–136]. In Kooij
et al. [73] pedestrian situation awareness (head orientation),
distance-based situation criticality, and spatial layout (curb
cues) are employed on top of a Switching Linear Dynamical
System to anticipate pedestrian crossing (Fig. 8). Gait analysis
using body pose for walking activity classification has been
studied in [77, 79]. Spatio-temporal relationships between peo-
ple have been incorporated in [78] for activity classification.

As shown in Table II, finer-grained semantic analysis of skill,
style, attention, distraction, and social interaction inference
of people around the vehicle is in its early stages. Several
recent naturalistic driving datasets with additional modalities,
fine-grained attribute and pose information [137–140] will
help to further push the richness of analysis provided by
algorithms looking at humans around the vehicle. Increased
resolution of the sensing modules will play a key role in
advances for intricate analysis of pedestrian state, intent, and
social relationship modeling [78, 122]. Because smooth and
safe driving often involves navigation around humans (e.g.
construction zones) and interaction with pedestrians (Fig. 7
depicts some of the relevant research tasks), this domain of
human analysis for intelligent vehicles is expected to have
high research and commercial activity.

C. Looking at Humans in Surround Vehicles

Understanding intent of drivers in surround vehicles, a
task continuously performed by human drivers, is also useful
for machine drivers. The research tasks are therefore shared
across the three domains of humans in intelligent vehicles.
When looking at humans in surround vehicles, vision-based
algorithms can be applied to understand behavior and intent,
predict maneuvers, and recognize skill, style, and attention.

Understanding activity and modeling intent of other vehicles
is widely researched for path prediction and activity classifi-
cation [85–87, 141]. Intent modeling is a critical step towards
risk assessment [55, 89–92]. Lefèvre et al. [54] employs a
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(a) Helping a distracted driver by sensing situational need and driver alertness levels [111].
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(b) Lane change maneuver prediction using driver and surround cues [112]. A Recurrent Neural Network with
Long Short-Term Memory (LSTM) units is employed to fuse cue modalities and capture temporal dependencies.

Fig. 11: Emerging research topics in integrative frameworks for on-road activity analysis.

Dynamic Bayesian model over spatial layout and vehicles state
(position, orientation, and speed) cues for detecting conflicting
intentions and estimating risk at intersections. In Zhang et
al. [96], a generative model for modeling traffic patterns at
intersections is proposed using vehicle trajectory, orientation,
and scene cues. Sivaraman et al. [94] proposes learning
trajectory patterns of surround vehicles with a hierarchical
representation of trajectory dynamics and a Hidden Markov
Model. The trajectory patterns are employed for surround
vehicles behavior analysis, including detection of abnormal
events. Detection of turn signals [84, 88, 93] is also useful
in understanding the intent of humans in surround vehicles
(Fig. 10). In Fröhlich et al. [88], vehicles are detected using a
Mixture-of-Experts model and tracked with a Kanade-Lucas-
Tomasi tracker. After background segmentation and light spot
detection, an AdaBoost classifier is employed over frequency-
domain features for performing turn signal analysis. Because
predicting intents of other vehicles is crucial to safe driving,
a robotic driving system should capture subtle cues of ag-
gressiveness, skill, style, attention, and distraction of humans
in surround vehicles. It is known that age, gender, and other
properties of the human driver influence driver behavior [85],

so that vision-based observation of humans in other vehicles
(e.g. body pose cues, preparatory movement of other drivers,
age classification, etc.) can be useful when working towards
aforementioned research tasks.

D. Integrative Frameworks

On the road, humans inside vehicles, around vehicles, and
in surround vehicles all interact together. Therefore, intelligent
vehicles are vehicles that can integrate information coming
from multiple domains for better scene understanding and
improved forecasting [142]. Holistic understanding is useful
for effective and appropriately engaged driver assistance sys-
tem, successful human-robot communication, and autonomous
driving. Example integrative systems are shown in Fig. 9.

As drivers interact with their surrounding continuously,
driver activities are often related to surrounding agent cues
(e.g. other vehicles and pedestrians). Maneuver prediction
[101–103, 143] often requires integrating surround and cabin
cues for an improved model of the driver state and conse-
quently better early event detection with lower false positive
rates. In Ohn-Bar et al. [102], both driver observing cues
(head, hand, and foot) and surround agent cues (distance
and locations to other vehicles) are integrated with Multiple
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(a) Preserving scene [82] (b) Preserving action [83] (c) Preserving gaze direction [1]

Fig. 12: Comparison of selected works in de-identification from different applications: (a) Google street view: removing
pedestrians and preserving scene using multiple views, (b) Surveillance: Obscuring identity of actor and preserving action and
(c) Intelligent vehicles: Protecting driver’s identity and preserving driver’s gaze.

Kernel Learning to identify intent of the ego-vehicle driver
to overtake. Driver attention estimation is another common
research theme in integrative frameworks, where driver cues
and surround object cues, such as pedestrian detection [99] or
salient objects [105], are integrated to estimate attentiveness
to surround objects. In Tawari et al. [111], situational need
assessment and driver alertness levels are employed as cues
for an assistive braking system (Fig. 11). Jain et al. [112]
employs multi-modal Long Short-Term Memory networks for
maneuver anticipation.

III. NATURALISTIC DATASETS AND ANALYSIS TOOLS

The survey of related research studies in Section II captured
the research landscape in terms of what has been done, and
what still needs to be done. As in all science and engineering
fields, a key component in future research relies on access
to naturalistic, high-quality, large datasets which can provide
insights into better algorithmic and system designs. Studying
user-specific nuances and achieving better situational aware-
ness in autonomous systems all require standardized metrics
and benchmarks. Furthermore, data accessibility issues are a
main reason why integrative frameworks are still little devel-
oped and understood on a principled manner. We therefore
mention current tools and datasets available to the scientific
community for the study of humans in and around vehicles.
The discussion further raises issues as to requirements for
further progress in the field.

A. Towards Privacy Protecting Safety Systems
The development of intelligent vehicles requires careful

consideration of safety and security of people in and around
the vehicle. This article has touched upon the fundamentals
needed to deal with safety issues but as naturalistic datasets
are developed there are important questions about security and
identity.

There is a trade-off between privacy and extracting driver
behavior. Many existing state-of-the-art algorithms on driver
behavior are able to achieve their purpose due to analysis
of raw signal and video input, with possible privacy impli-
cations. Privacy preserving considerations may play a role
in the construction of publicly available large-scale datasets,
especially as current state-of-the-art algorithms for intelligent
vehicles require large amounts of data for training and evalu-
ation. Therefore, as a community, it is important to raise the
standards of both safety and security in the development on
intelligent vehicles.

B. Naturalistic Driving Datasets

Table III lists recent datasets which are publicly available
for the study of humans inside and around the vehicle. As can
be seen, only a handful of such standardized datasets currently
exist. Because pedestrian detection and tracking is a well-
studied problem, such tasks have several publicly available
benchmarks, including Caltech pedestrians [144], Daimler
[145], KITTI [138], and Cityscapes [146, 147]. The Caltech
roadside pedestrians dataset [137] includes body pose and fine-
grained pedestrian attribute information. Other datasets are
not generally captured in driving settings (e.g. surveillance
applications [148], static camera [78], and stroller or hand-
held camera [149–151]).

The datasets are visualized in Fig. 14, demonstrating the
progress that has been made in the field so far. Face and
hand detection and analysis can now be measured in harsh
occlusion and illumination settings in the vehicle. Similarly,
challenging datasets observing surround agents continuously
push the field further with comparative evaluations. As can be
seen in Fig. 14, the majority of the dataset emphasizes basic
vision tasks of detection, segmentation, or pose estimation. On
exception is the Brain4Cars dataset [51] which provides anno-
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Fig. 13: Example image-to-control policy pipeline (mediated-
semantic perception [152, 153]) with deep networks (DNN),
where initial prediction of semantic scene elements is followed
by a control policy algorithm.

tations for activity anticipation. As methods further progress
on such recent benchmarks, additional higher-level semantic
tasks such as activity understanding and forecasting could be
introduced and evaluated.

IV. CONCLUDING REMARKS

Intelligent vehicles are at the core of transforming how
people and goods are transported. As technology takes a
step closer towards self-driving with recent advances in ma-
chine sensing, learning, and planning, many issues are still
left unresolved. In particular, we highlight research issues
as they relate to the understanding of human agents which
interact with the automated vehicle. Self-driving and highly
automated vehicles are required to navigate smoothly while
avoiding obstacles and understanding high levels of scene
semantics. For achieving such goals, further developments in
perception (e.g. driveable paths), 3D scene understanding, and
policy planning are needed. The current surge of interest in
intelligent vehicle technologies is related to recent progress
and increased maturity in image recognition techniques [154–
157] and, in particular, to the successful application of deep
learning to image and signal recognition tasks [158–162].
Deep temporal reasoning approaches [112, 163] have also
shown similarly impressive performance, and are useful for
a variety of learning tasks (e.g. distraction detection [20]).
Furthermore, control policy for self-driving, both mediated-

TABLE III: Overview of selected publicly available naturalis-
tic datasets from a mobile vehicle platform.

Dataset Description
Studying humans inside cabin

VIVA-Hands
[118, 173] (2014)

Detection, tracking, and gestures of driver
and passenger hands in video.

VIVA-Faces [174]
(2014)

Detection and pose estimation of in-vehicle
occupants’ faces.

Studying humans inside cabin and in surround vehicles.
Brain4Cars [51] Lane change maneuver prediction with

cabin-view camera, scene-view camera,
GPS, and vehicle dynamics.

Studying humans around vehicles.
Caltech [137] (2015) Body pose and fine-grained classification

of pedestrians, including age, gender, and
activity.

Studying surround vehicles and humans around vehicles.
KITTI [138] (2012) Vehicle and pedestrian 3D tracklets anno-

tated with stereo imagery, GPS, lidar, and
vehicle dynamics.

Cityscapes [146]
(2015)

On-road object segmentation with stereo
video, vehicle dynamics, and GPS.

semantic perception approaches [152] and behavior reflex,
end-to-end, image to control space approaches [164–172]
(e.g. Fig. 13) have been making major strides. The exciting
and expanding research frontiers raise additional questions
regarding the ability of techniques to capture context in a
holistic manner, handle many atypical scenarios and objects,
perform analysis of fine-grained short-term and long-term ac-
tivity information regarding observed agents, forecast activity
events and make decisions while being surrounded by human
agents, and interact with humans.

Moving towards vehicles with higher autonomy opens new
research avenues in dealing with learning, modeling, active
control, perception of dynamic events, and novel architectures
for distributed cognitive systems. Furthermore, these chal-
lenges must be addressed in a safety-time critical context. We
hope that this paper serves as an invitation to pursue exciting
multidisciplinary research leading towards a safer, smoother,
efficient, and enjoyable driving experience.
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