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Abstract—In this paper, a multiview, multimodal vision frame-
work is proposed in order to characterize driver activity based
on head, eye, and hand cues. Leveraging the three types of
cues allows for a richer description of the driver’s state and for
improved activity detection performance. First, regions of interest
are extracted from two videos, one observing the driver’s hands
and one the driver’s head. Next, hand location hypotheses are
generated and integrated with a head pose and facial landmark
module in order to classify driver activity into three states: wheel
region interaction with two hands on the wheel, gear region
activity, or instrument cluster region activity. The method is
evaluated on a video dataset captured in on-road settings.

I. INTRODUCTION

Secondary tasks performed in the vehicle have been shown
to increase inattentiveness [1], which, in 2012 was a con-
tributing factor in at least 3092 fatalities and 416,000 injuries
[2]. According to a recent survey, 37% of the drivers admit
to having sent or received text messages, with 18% doing
so regularly while operating a vehicle [3]. Furthermore, 86%
of drivers report eating or drinking (57% report doing it
sometimes or often), and many reported common GPS system
interaction, surfing the internet, watching a video, reading a
map, or grooming.

Because of the above issues, on-road analysis of driver
activities is becoming an essential component for advanced
driver assistance systems. Towards this end, we focus on
analyzing where and what hands do in the vehicle. Hand
positions can provide the level of control drivers exhibit during
a maneuver or can even give some information about mental
workload [4]. Furthermore, in-vehicle activities involving hand
movements often demand coordination with head and eye
movements. In fact, human gaze behavior studies involving
various natural dynamic activities including driving [5], [6],
typing [7], walking ([8]), throwing in basketball [9], batting
in cricket ([10]) etc., suggest a common finding that gaze
shifts and fixations are controlled pro actively to gather visual
information for guiding movements.While specific properties
of the spatial and temporal coordination of the eye, head and
hand movements are influenced by the particular tasks, there is
strong evidence to suggest that the hand usually waits for the
eyes either for the target selection or for the visual guidance for
the reach, or both [11]. For this, a distributed camera setup is
installed to simultaneously observe hand and head movements.

The framework in this work leverages two views for driver
activity analysis, a camera looking at the driver’s hand and
another looking at the head. The multiple views framework
provides a more complete semantic description of the driver’s
activity state [12]. As shown in Fig. 1, these are integrated

in order to produce the final activity classification. First,
the hand detection technique is discussed, then a detailed
description of relevant head and eye cues is given, followed
by a description of head, eye and hand cueintegration scheme.
Lastly, experimental evaluations is presented on naturalistic
driving.

II. FEATURE EXTRACTION MODULES

A. Hand Cues

In the vehicle, hand activities may be characterized by
zones or regions of interest. These zones (see Fig. 1) are
important for understanding driver activities and secondary
tasks. This motivates scene representation in terms of these
salient regions. Additionally, structure in the scene can be
captured by leveraging information from the multiple salient
regions. For instance, during interaction with the instrument
cluster, visual information from the gear region can increase
the confidence in the current activity recognition, as no hand
is found on the gear shift. Such reasoning is particularly
useful under occlusion, noise due to illumination variation,
and other visually challenging settings [13]. In [14], [15],
edge, color, texture, and motion features were studied for the
purpose of hand activity recognition. Since we found that edge
features were particularly successful, in this work we employ
a pyramidal representation for each region using Histogram
of Oriented Gradients (HOG) [16], with cell sizes 1 (over the
entire region), 4, and 8 for a 8+128+512 = 648 dimensional
feature vector.

B. Head and Eye Cues

Knowing where the driver is looking can provide important
cues about any on-going driver activities. While precise gaze
information is ideally preferred, its estimation is very chal-
lenging, especially when using remote eye tracking systems in
a real-world environment such as driving. However, a coarse
gaze direction, i.e. gaze zone, is often sufficient in a number of
applications, and can be relatively robustly extracted in driving
environments [17].

Driver’s gaze is inferred using head-pose and eye-state. We
use facial features-based geometric approach for head pose
estimation. With recent advancements in facial feature tracking
methods [18], [19] and two cameras monitoring the driver’s
head, we can obtain good accuracy and can reliably track the
driver’s head during spatially large head movements [20]. The
tracked facial landmarks can not only be used to estimate head
pose, but can also be used to derive other states of the driver,
such as the level of eye opening. Head pose alone provides a
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Fig. 1: The proposed approach for driver activity recognition. Head and hand cues are extracted from video in regions of interest.
These are fused using a hierarchical Support Vector Machine (SVM) classifier to produce activity classification.

good approximation of gaze zone, but neighboring zones (e.g.
instrument cluster region and gear region) are often confused
[17]. In such cases, eye-state such as eye-opening can help to
disambiguate between confusing zones.

In our implementation, the eye state at time t is estimated
using two variables: area of the eye and area of the face.
Area of the eye is the area of a polygon whose vertices are
the detected facial landmarks around the left or right eye.
Similarly, the area of the face is the area of the smallest
polygon that encompass all the detected facial landmarks. To
compute the level of eye opening, we divide area of the eye
by the area of the face at every time t. This normalization
will allow the computation of eye opening to be invariable to
driver’s physical distance to the camera, where closer distances
makes the face appear larger in the image plane. Finally, a
normalization constant learned for each driver representing
his or her normal eye-opening state is used such that after
normalization values < 1 represent downward glances and
values > 1 represent upward glances (visualized in Fig. 2.

The eye-opening cue in addition to head pose, has potential
in differentiating between glances towards the instrument clus-
ter and glances towards the gear, as shown in Fig. 2. Figure
2 shows the mean (solid line) and standard deviation (semi-
transparent shades) of two features (i.e. head pose in pitch
and eye opening) for three different driver activities, using the
collected naturalistic driving dataset. The feature statistics are
plotted 6 seconds before and after the start of the driver hand
activity, where time of 0 seconds represents the start of the
activity. Using the eye opening cues alone, we can observe
that when the driver is interacting with the instrument cluster
he or she glances towards the IC at the start of the interaction.
However, when the driver is interacting with the gear, while
there is some indication of a small glance before the start of
the activity, there is significant glance engagement with the
gear region after the start of the event.

As the above cues may occur before or after an associated

hand cue (i.e. looking and then reaching to the instrument
cluster), the head and eye features are computed over a
temporal window. Let hhh(t) represent the features containing
the head pose (in pitch, yaw and roll in degrees) and the
level of eye opening (for both left and right eye) at time t
and δ be the size of the time window to be used for temporal
concatenation. Then, the time series φφφ(t) = [hhh(t−δ), . . . ,hhh(t)]
is the feature set extracted from the head view at time t to be
further used in the integration with hand cues.

III. ACTIVITY RECOGNITION FRAMEWORK

In this section, we detail the learning framework for fusion
of the two views and performing activity classification. The
classifier used is a linear kernel SVM [21], and fusion is done
using a hierarchical SVM which produces the final activity
classification.

Because the hand and head cues are different in nature, first
a multiclass Support Vector Machine (SVM) [22] is trained
to produce activity classification based on the hand view
region features only. A weight, wi is learned for each class
i ∈ {1, . . . , n} where n is the number of activity classes.
In this work, we focus on three activity classes: 1) Wheel
region interaction with two hands on the wheel; 2) Gear region
interaction; 3) Instrument cluster interaction. The weights for
all of the classes are learned jointly, and classification can be
performed using

i? = argmax
i∈{1,...,n}

wT
i x (1)

where x is the feature vector from all the regions in the
hand view.

In order to measure the effectiveness and complementarity
of the hand and head cues, activity recognition will be studied
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(a) (b)

Fig. 2: Head and eye cue statistics visualization for (a) instrument cluster (IC) activity sequences against normal wheel interaction
sequences and (b) gear shift activity sequences against normal wheel interaction sequences. Time t = 0 represents the start of
the respective driver activity. The blue and red line represent the mean statistics of respective cues (i.e. head pose in pitch, eye
opening) for 6 seconds before and after the start of the driver hand activity. The lighter shades around the solid line indicate the
standard deviation from the respective mean statistics.

using hand-only cues and integrated hand and head cues. Hand
cues can be summarized using normalized scores,

p(i|x) = exp (wT
i x)∑

j exp (wT
j x)

(2)

These posterior probabilities can be calculated at every
frame and are abbreviated in Fig. 1 as pi. For the fusion of
the hand and head views, the hand cues are concatenated with
the windowed signal of head features to produce the feature
set at time t,

x(t) =


p1(t)

...
pn(t)
φφφ(t)



The fused feature vector is given to a hierarchical second-
stage multiclass SVM to produce the activity classification.

The classes in our dataset are unbalanced. For instance, one
activity class such as wheel region two-hands on the wheel may
occur in the majority of the samples. Nonetheless preserving
all of the samples for the wheel region in training could be

beneficial in producing a robust classifier which can generalize
over the large occlusion and illumination challenges occurring
in the wheel region. Therefore, we also incorporate a biased-
penalties SVM [23], which adjusts the regularization parameter
in the classical SVM to be proportional to the class size in
training.

IV. EXPERIMENTAL EVALUATION AND DISCUSSION

The proposed driver hand activity recognition framework
is evaluated on naturalistic driving data from multiple drivers.
Using hand annotated ground truth data of driver hand activity,
we show promising results of integrating head and hand cues.

A. Experimental Setup and Dataset Description

The naturalistic driving dataset is collected using two cam-
eras, one observing the driver’s hands and another observing
the driver’s head. Multiple drivers (three male and one female)
of varying ethnicity and varying age from 20 to 30, as well as
varying driving experience participated in this study. Before
driving, each driver was instructed to perform, at his or her
convenience, the following secondary tasks any number of
times and in any order of preference:

• Instrument cluster (IC) region activities: On/off
radio, change preset, navigate to radio channel,
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increase/decrease volume, seek/scan for preferred
channel, insert/eject a CD, on/off hazard lights,
on/off/adjust climate control.

• Gear region activities: Observed while parking and
exiting parking.

• Wheel region activities: Observed under normal driv-
ing conditions.

The drivers practiced the aforementioned activities before
driving in order to get accustomed to the vehicle. In addition,
instructors also prompted the drivers to instigate these activities
randomly but cautiously. Driving was performed in urban,
high-traffic settings.

Ground truth for evaluation of our framework is obtained
from manual annotation of the location of driver’s hands. A
total of 11, 147 frames from many number of driver activities
during the drives were annotated: 7429 frames of two hands in
the wheel region for wheel region activity, 679 frames of hands
on the gear, and 3039 frames of interaction in the instrument
cluster region. As the videos were collected in sunny settings
at noon or the afternoon, they contain significant illumination
variation that is both global and local (shadows). With this
dataset, all testing is performed by cross subject test settings,
where the data from one subject is used for testing and the rest
for training. This ensures generalization of the learned models.

B. Evaluating of Hand and Head Integration

Capturing the temporal dynamics of head and hand cues
is evaluated in terms of activity classification out of a three
class problem: 1) Wheel region interaction with two hands on
the wheel; 2) Gear region interaction; 3) Instrument cluster
interaction. Hand cues may be used alone, with results shown
in Fig. 4(a). The results are promising, but instrument cluster
and gear classification are sometimes confused due to the
arm presence in the gear region while interaction occurs with
the instrument cluster. Furthermore, under volatile illumination
changes the method may also fail.

Incorporating head cues is shown to resolve some of the
challenges, as depicted in Fig. 4(b). In order to capture head
and hand cue dynamics, head and eye cues are calculated over
a temporal window in order to generate φφφ(t), the final head
and eye feature vector at time t. The effect of changing the
time window are shown in Fig. 3. We notice how increasing the
window size of up to two seconds improves performance, after
which results decline. With a large temporal window, the cue
becomes less discriminative and also higher in dimensionality,
which explains the decline. Nonetheless, we expect a peak in
results for a window size larger than one entry, as head and
hand cues may be temporally delayed. For example, a driver
may look first and then reach towards the instrument cluster
or gear shift.

Fig. 5 visualizes some example cases where hand cues
provide ambiguous activity classification due to visually chal-
lenging settings, yet these are resolved after the predictions
are rescored with the second stage hierarchical SVM and head
and eye cues. For each of the depicted scenarios, the hand
view, head view, and the fitted head models are shown. Using
the hand cue prediction (shown in the purple probabilities)
would have resulted in an incorrect activity classification. For

−6 −4 −2 0
0.91

0.92

0.93

0.94

0.95

0.96

Time Window (sec)

N
o
rm

a
liz

e
d
 A

c
c
u
ra

c
y

Fig. 3: Effect of varying the time window before an event
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Fig. 4: Activity recognition based on hand only cues and
hand+head cue integration for three region activity classifi-
cation. IC stands for instrument cluster.

instance, some of the hand enters the gear shift while still
interacting with the instrument cluster in the top figure. This
leads to a wrong prediction using hand cues, but pitch and head
information rescore the probabilities and correctly classify the
activity (final classification after integration is visualized with
a red transparent patch). Illumination variation may also cause
incorrect activity classification based on hand cues alone, as
shown in Fig. 5.

For the three region classification problem, head pose and
landmark cues exhibit a distinctive pattern over the temporal
window. A large window to include the initial glance before
reaching to the instrument cluster or the gear shift as well as
any head motions during the interaction significantly improves
classification as shown in Fig. 4. Mainly, the gear shift and
instrument cluster benefit from the integration.

V. CONCLUSION

In this work, we proposed a framework for leveraging both
a hand and head view in order to provide activity recognition
in a car. Integration provided improved activity recognition
results and allows for a more complete semantic description
of the driver’s activity state. A set of in-vehicle secondary tasks
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Fig. 5: Visualization of the advantage in integrating head, eye, and hand cues for driver activity recognition. We show the hand
view, head view, and the fitted head model. In purple are the probabilities of the activity based on hand cues alone. In orange are
the rescored values using a hierarchical SVM and head and eye cues. Note how in the above scenarios, the incorrect hand-based
predictions were corrected by the rescoring based on head and eye cues.

performed during on-road driving was utilized to demonstrate
the benefit for such an approach, with promising results. Future
work would extend the activity grammar to include additional
activities of more intricate maneuvers and driver gestures,
as in [24], [25]. Combining the head pose with the hand
configuration to produce semantic activities can be pursued
using temporal states models, as in [26]. Finally, the usefulness
of depth data will be studied in the future as well [27].
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