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Abstract—As vehicles travel through a scene, changes in aspect
ratio and appearance as observed from a camera (or an array
of cameras) make vehicle detection a difficult computer vision
problem. Rather than relying solely on appearance cues, we
propose a framework for detecting vehicles and eliminating false
positives by utilizing the motion cues in the scene in addition
to the appearance cues. As a case study, we focus on overtaking
vehicle detection in a freeway setting from forward and rear views
of the ego-vehicle. The proposed integration occurs in two steps.
First, motion-based vehicle detection is performed using optical
flow. Taking advantage of epipolar constraints, salient motion
vectors are extracted and clustered using spectral clustering
to form bounding boxes of vehicle candidates. Post-processing
and outlier removal further refine the detections. Second, the
motion-based detections are then combined with the output of
an appearance-based vehicle detector to reduce false positives
and produce the final vehicle detections.

I. INTRODUCTION

Robust object detection is an active branch in the pattern
recognition and computer vision community, particularly in ob-
ject detection from multiple views. Recent progress is mostly
centered around integration of multiple models. For instance,
a different model can be learned for a particular view and
represented as a component in a mixture model [1], [2], [3],
[4]. In this work, we use motion cues in order to augment the
detections produced by such methods. This integration shows
improved performance, both in terms of increased true positive
rate and decreased false positive rate.

In this work, we focus on vehicle detection from two
wide-angle monocular cameras capturing the forward and
backward views of a vehicle, which is an important application
of multi-view object detection. The last decade has seen
an emergence of multiple sensors and intelligent systems in
vehicles for driver assistance and autonomous driving. In
particular, computer vision and radar system have become
increasingly common in modern vehicles to sense surroundings
and obstacles. Monocular computer vision systems, which are
cheap and easy to install, face many challenges. For instance,
images of vehicles vary in aspect ratio, scale, and shape as they
travel throughout a scene. This is especially true for the most
critical of vehicles: those that are in close proximity to the
ego-vehicle. On the opposite side of the spectrum are distant
vehicles, which are easier to model and detect because they
appear relatively static in the scene, and are a popular subject
of study in much of the vehicle detection work.

Overtaking vehicles are inherently risky and critical to

Fig. 1: Motion cues can be integrated with an appearance-based
detector to handle partial visibility, occlusion, and remove false
positive detections. Left: detections from an appearance based
detector (deformable part model from [1]). Right: detections
from appearance based detector with proposed motion cues
integrated. Detections are visualized as a yellow box, and
motion flow vectors are visualized in blue.

the driver due to the high relative velocity needed for an
overtake, and because vehicles become occluded or obscured
within blind spots as they come from behind to pass. The
monocular vision based system is advantageous because it
can be integrated with other camera systems on the vehicle,
such as a rear-facing backup camera, or a forward-facing lane
detection camera. In this paper, we extensively evaluate the
proposed algorithm on video data of real world driving in a
freeway setting. We subsequently compare the performance of
our algorithm to state-of-the-art appearance-based detectors.

This work includes two main contributions: given a trained
appearance-based vehicle detector, we remove false positive
detections using motion information from the scene. Further-
more, clustering moving objects in the scene provides addi-
tional proposals, which are integrated to produce a significant
improvement in overall vehicle detection. Motion cues have
the distinct advantage of being available even when a vehicle
is partially visible, such as at the edge of the field of view,
or when occluded by other objects or vehicles. Thus, the
vehicle detection can provide a more complete and continuous
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Research Study Features Description

Lenz et al. [5] Stereo and Motion Stereo disparity and optical-flow are clustered
and tracked over time.

Garcia et al. [6] Radar and Motion Raw radar data is projected to the camera image
and associated with optical flow.

Jazayeri et al. [7] Motion Scene motion is probabilistically modeled and an
HMM separates vehicles from the background.

Wang, Bebis, and Miller [8] Motion Homogeneous sparse optical-flow and block-
based eigenspaces are used to model and seperate
the foreground and background regions of the
scene.

Ohn-Bar, Sivaraman, and Trivedi [9] Stereo, Appearance and Motion Vehicles are localized using active-learning based
appearance detector and optical-flow at edges of
the scene, then tracked with stereo disparity and
a Kalman filter.

This study Appearance and Motion Optical flow and the epipolar geometry of the
scene are used to find initial vehicle candidates
and then compared to appearance-based detec-
tions to refine final detections and remove false
positives.

TABLE I: Selection of recent vehicle detection methods which incorporate motion cues.

trajectory, especially when the detected vehicle is near the ego-
vehicle. This is highly useful for vision-based scene analysis
for driver assistance and criticality assessment. Additionally,
motion cues can still be extracted when there is visual dis-
tortion in the scene, such as from surround view systems
(e.g. from a Point Grey Ladybug camera system, or from a
panoramic system [10]). Since appearance-based detectors can
be negatively affected in this situation, motion cues can be a
very useful addition, as is shown in [11].

II. RELATED RESEARCH STUDIES

Object detection in computer vision is a long studied area,
with appearance based detectors being quiet popular. There
are a wide range of appearance based detectors (a survey can
be found in [12]). Recent algorithms, such as the deformable
parts model (DPM) detector [1], specifically reason over the
appearance variation that results from multiple views of object
categories. Nonetheless, we found that these methods are
still limited in terms of occlusion handling. They also rely
on extensive training on large datasets, which affects their
performance. On the other hand, motion cues from objects
changing in orientation, various lighting conditions, and with
partial occlusions, can still be extracted from a video.

Recent studies have found success in motion-based vehicle
detectors, a list of which can be seen in Table I. For example,
Jazayeri et al. [7] use a probabilistic model of the motion cues
in the scene, and a hidden Markov model to detect the moving
vehicles. In addition, we found motion cues to be important
when considering two wide angle views: the front and rear
of the vehicle. This motivated us to incorporate motion-based

cues, as these are more robust to changes in appearance,
with appearance-based cues to improve performance of the
proposed vehicle detector. Recently, in [9], an active-learning
vehicle detector was combined with the motion-cues from the
edges of the scene to accurately detect vehicles earlier in the
video sequence.

III. ROBUST MOTION CUE EXTRACTION FOR VEHICLE
DETECTION

The proposed vehicle detector begins with the optical
flow calculation of the video sequence. We investigated three
optical flow algorithms: Lucas-Kanade [13], Brox and Malik
[14], and Farnebäck [15]. We found that a GPU accelerated
version of the Farnebäck optical flow algorithm provided
relatively accurate and quick results, and thus, this was used
for generating the results in this paper. Nevertheless, we found
that all three optical-flow algorithms produced incorrect flow at
certain pixels (an example of the Farnebäck dense optical-flow
is seen in Fig. 3(a)).

Consistency Check Dense optical flow is produced both
forwards and backwards at every frame in the video sequence
in order to address issues with wrongly tracked points. The
dense optical flow is sampled at corners in order to produce
accurate flow vectors. A consistency check of the sampled flow
vectors is performed by checking whether the forward and
backwards vectors are inverses of each other. Flow vectors
that are incorrectly calculated, like at edges of frames, or
at occlusions, will fail the consistency check, improving the
average accuracy of the flow vectors. The consistency check
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Fig. 2: Flowchart illustrating the proposed algorithm for the overtaking vehicle detector using motion cues.

(a) (b) (c) (d)

Fig. 3: The consistency check for sampled optical-flow vectors can remove any incorrectly calculated motion vectors from
consideration, particularly at the edges of the field of view, or near occlusions. (a) The forward dense optical flow for a freeway
scene. (b) The forward optical-flow vectors sampled at strong corners. (c) The sampled backwards optical-flow vectors. (d) The
corrected optical-flow vectors, with many texture-less areas and boundary errors resolved.

used is:
||Vf − Vb||2 ≤ tconsistent (1)

Where Vf is the forwards flow vector, and Vb is the backwards
vector, and tconsistent is an accuracy threshold. The results of
the consistency check can be seen in Fig. 3.

Epipole Extraction The corrected flow vectors are next
used to estimate the fundamental matrix for the current pair
of frames. This is done to leverage the epipolar geometry of
the moving camera setup. The fundamental matrix is estimated
using RANSAC and the 8-point algorithm [16], with the flow
vectors used as corresponding point pairs. Next, the focus of
expansion of the initial frame is estimated by extracting the
epipole coordinates from the fundamental matrix.

Spectral Clustering The flow vectors are clustered to-
gether using an iterative spectral clustering algorithm recom-
mended in [17]. The clustered flow vectors for a sample frame
can be seen in Fig. 4. The flow vectors are clustered with
respect to their similarity in flow and spatial proximity in the
frame. The spectral clustering algorithm tightly grouped fore-
ground objects when compared to simple k-means clustering,

which would often extend out from the foreground objects and
include background pixels in the cluster.

Ego-motion Compensation In order to separate the motion
clusters belonging to overtaking vehicles from the background,
ego-motion compensation must be performed. Flow vectors
moving in contradiction to the focus of expansion are not
following the epipolar-geometry model, and are thus assumed
to belong to an independently moving vehicle, possibly per-
forming an overtaking. The amount of motion is characterized
by the deviation from the vector emitted from a point in the
previous frame to the epipole, lv , and the estimated optical
flow vector, v.

v · lv ≤ tmoving (2)

tmoving is a threshold for handling estimation errors in the
epipole location. For forward motion, the dot product is
expected to be positive, as the direction of motion should
roughly follow the direction of lv . For the rear we use the
inverse of the condition, as we expect the two vectors to point
in opposite directions.

Cluster Merging The spectral clustering provides a slight
over-segmentation of the flow, so objects in the scene may
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(a)

(b)

Fig. 4: The spectral clustering algorithm tightly groups optical-
flow vectors for the objects in the scene. (a) The output of the
spectral clustering step on the sampled optical flow vectors.
The clustered motion vectors are shown, where each cluster is
visualized with a unique color. The centroid and average flow-
vector of the clusters are visualized as large dots, and thick
black lines, respectively. (b)Motions vectors after ego-motion
compensation. Note that only vectors remaining belong to the
vehicle entering the frame.

be divided into multiple clusters and must be merged back
together. We assume two clusters belong to the same object
if they have a similar average flow vector, and their centroids
are in spatial proximity to each other. This is implemented as
the following inequality:

||c1 − c2||2 + ||v1 − v2||2 ≤ tsimilar (3)

Where c1 and c2 are the centroid coordinates of a pair of
clusters , and v1 and v1 are the average flow vectors of the
pairs of clusters. Here, we assume that clusters belonging to
the same object or vehicle will be in close proximity to each
other in the image, and will exhibit a similar optical flow,
expressed in the average optical flow term vi. tsimiliar is a
user set threshold for the level of similarity required for the
merge.

Post Processing With the clusters merged, some final post-
processing is done to clean the detections, as well as remove
any false positives affecting the results. The final clusters

Fig. 5: Sample output detections for the motion-only algorithm
from a forward and backward view. Note how vehicles are still
detected, even as vehicles enter and exit the scene.

sometimes include outlier motion vectors that will affect
the accuracy of the final detection. We assumed a Gaussian
distribution in the origin location of the optical flow vectors,
and calculate the standard deviation of the vector origins for
each cluster. Optical-flow vectors that exceed two standard
deviations away from the centroid in either x or y direction are
eliminated from the cluster. To further increase the accuracy of
the final detections, clusters with very small bounding boxes,
or with a small number of flow vectors are removed. Since
vehicles near the ego-vehicle will appear large in the scene,
small clusters are likely to belong to distance vehicles, or
false positives, and can thus be removed from consideration.
The final vehicle detections are presented as bounding boxes
calculated from the flow vector clusters. Sample outputs of the
motion-only detector can be seen in Fig. 5.

Motion Cue Integration With Appearance-Based Detec-
tor With motion and appearance-based vehicle bounding boxes
calculated, the two sets of boxes are merged by taking their
union and removing overlapping instances using non-maximal
suppression. Bounding boxes found to have too little motion
after ego-motion compensation are removed from consider-
ation. This integration technique was found to significantly
improve performance of the appearance-based object detectors.
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Fig. 6: Two appearance-based detectors were used in our
experiments: the deformable parts model (DPM) from [1] and
Hejrati and Ramanan [2]. The proposed motion integration
with a 20% overlap threshold was also evaluated. Integration
of the motion-based detection boxes (MB), along with the false
positive removal scheme using motion compensation (MC)
show significantly improved results over the state-of-the-art
methods.

IV. EXPERIMENTAL SETUP

The video data used throughout this work was acquired
using two monochrome Point Grey Flea3 cameras fitted with
Theia wide-angle lenses, located on the windshield of the
vehicle, pointing forwards, and on the roof of the vehicle,
pointing backwards. The data was collected in a freeway
setting, during the day, with light to moderate traffic. Ground
truth data consists of 1327 vehicle instances containing 20
overtakings. Tested algorithms are evaluated by comparing
the overlapping areas between the ground truth data, and
the detected bounding boxes. We found that our proposed
algorithm greatly improves on the standard Viola Jones method
[18] trained on images of the front and rear of vehicles, as the
changing aspect ratio caused many misses. To better evaluate
our proposed algorithm, two state-of-the-art detectors were
tested: the deformable part model in [1] and an extension of
the DPM from Hejrati and Ramanan [2].

V. EXPERIMENTAL EVALUATION

Generally, Hejrati12 performed significantly better than the
DPM on our dataset, as it is designed to detect occluded and
partially visible vehicles. Furthermore, the DPM produces de-
tections only when a vehicle has completely entered the scene.
Additionally, although the motion-only algorithm is proficient
at detecting vehicles as they come into the scene, non-tight
vehicle bounding boxes are sometimes outputted. Nevertheless,
as shown in Fig. 6, with a 0.2 overlap requirement for a true
positive, a significant improvement is shown with both meth-
ods of motion integration. Two motion integration techniques
are evaluated in this work: motion based detections (referred
to as MB), and the motion compensation scheme (referred to
as MC), which removes many false positive detections.

Although the motion cues in the scene are strong and
realiable in proximity to the ego-vehicle, the detections can
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Fig. 7: Measuring the localization accuracy of the algorithms.
Note how motion boxes produce higher true positive rates
at lower overlap threshold requirements. Because the motion
detections are not tight, performance deteriorate as the local-
ization requirement increase.

lack tightness around overtaking vehicle. Therefore, we also
evaluate how changing the overlap threshold between the
ground truth bounding box and the detected bounding box
affects true positive rate, seen in Fig. 7. We note that there
is a great improvement in all tested algorithms when the
overlap threshold is relaxed. For example, the DPM algorhtm
(which is significantly faster than the Hejrati12 algorithm)
is significantly improved with the motion integration. The
advantage of our algorithm is that no training is needed for
the motion step, and can thus be generalized for any existing
appearance-based vehicle detector to produce more continuous
detections. However, even with the post-processing steps, the
tightness of the detected motion-based bounding boxes must
be improved. Nonetheless, our proposed motion integration
method is promising, and the DPM+MC+MB scheme is
comparable to the occlusion-reasoning Hejrati12 algorithm
with relaxed overlap requirements. The motion-only algorithm
runs at approximately one fps using GPU acceleration for
calculating dense optical flow. At this speed, the algorithm
is much faster than the two state-of-the-art methods evaluated
in this work, but further speedups will be required for this
algorithm to be used in real-time applications.

VI. CONCLUDING REMARKS AND FUTURE WORK

We presented a method for integrating motion cues with
an appearance-based vehicle detector for multi-view vehicle
detection. Evaluation was done by improving detection rates
of state-of-the-art vehicle detection algorithms. Future work
should include additional outlier removal schemes and post
processing for tightening the output bounding boxes of our
algorithm. Additionally, more sophisticated approaches involv-
ing a combination of the appearance-based and motion-based
detections into the spectral clustering as proposed in [19]
can be pursued. Also, the proposed method provides a more
complete vehicle trajectory, which can be used as part of a
traffic pattern analysis system as in [20].
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