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Abstract— Observing hand activity in the car provides a
rich set of patterns relating to vehicle maneuvering, secondary
tasks, driver distraction, and driver intent inference. This work
strives to develop a vision-based framework for analyzing such
patterns in real-time. First, hands are detected and tracked
from a monocular camera. This provides position information of
the left and right hands with no intrusion over long, naturalistic
drives. Second, the motion trajectories are studied in settings
of activity recognition, prediction, and higher-level semantic
categorization.

I. INTRODUCTION

This study is concerned with construction of robust,
vision-based tools for studying hand motion patterns under
naturalistic, real-world settings. Since the study of human
hands is an active field in the computer vision, machine
learning, and human-machine interaction communities, the
methods developed in this work are relevant to a wide array
of applications. Inferring hand activity is especially important
in the operated vehicle, as hands are a common medium for
expressing and conveying information. For instance, it may
provide vital information about the state of attentiveness of
the driver. In order to clearly motivate the study, we list
potential applications below.

Motivating applications: First, hand tracking allows the
study of preparatory movements for maneuvers [1], [2].
Such information may be useful when providing alerts and
support to the driver [3]. For instance, while performing
a sharp turn a driver may shift the hand position while
the turn is ongoing in order to further turn the wheel, an
action which may lead to an accident. Another example is
in preparing for an overtaking maneuver, where a driver may
shift the hand position together with a sequence of head
and body pose dynamics to prepare for the overtake [2].
A second potential application is in monitoring distraction
levels, as hand-vehicle and hand-object interactions (such
as text messaging, handling navigation, etc.) can potentially
increase visual, manual, and cognitive load [4]. This impor-
tant application is presseing as drivers today are increasingly
engaged in secondary tasks behind the wheel (23.5% of
the time according to [4]). A third possible application lies
in providing a framework for hand gesture recognition for
interactivity, as in [5]. Finally, long term analysis of hand
motion can provide useful insight into crash and near-crash
events. For instance, in studying gestures performed by the
driver for re-gaining control following an unexpected event.
The framework proposed in this paper can be immediately
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Fig. 1: Motion patterns are studied in terms of activity
classification, prediction, and high-level semantics by ob-
serving hand movement in naturalistic driving settings. First,
driver hands are detected and tracked in real-time in order
to produce trajectories in real-time processing. The figure
depicts left and right hand positions (in red and green
respectively) for an entire drive. Trajectories are formed and
used for several proposed driver assistance applications.

applied to other applications of hand gesture recognition [6],
such as tutoring applications as in [7].

II. HAND DETECTION MODULE

In this section we specify the image pre- and post-
processing, feature extraction, and training and testing rou-
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Fig. 2: The hand detection module. Hand location proposals are outputted by AdaBoost with color (LUV colorspace pixels)
and gradient (normalized gradient and histogram of oriented gradients). These are classified as left or right hands, and
tracking provides the hand trajectories.
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Fig. 3: Evaluation of the hand detection module using different parameters. The choice of model dimensions impact
performance as only one model is trained over a variety of hand rotations and box aspect ratios. Furthermore, appropriate
dimensions and padding also reduce false positives in the proximity of the hand. The impact of each of the studied features
on detection performance is shown (M-gradient magnitude, O-gradient orientation, SKIN-learned skin-likelihood classifier,
and LUV colorspace pixels).

tines for the hand detector.
Hand detection is a challenging task, studied extensively in

the vision community. In our dataset, some main challenges
are common occlusion by objects and self-occlusion of the
hand, deformation, and rotation (see Fig. 4. Color, edge, and
texture cues are commonly used for hand detection [8], [9]).
The detection scheme of aggregate channel features from
[10] is employed due to the fast detection (30 frames per
second on a 640× 480 image) and state-of-the-art detection
performance.

For evaluating the hand detection module, 922 hand in-
stances are used for training and 1516 for testing. Color
features, in particular LUV colorspace pixel values, were
shown to work significantly better compared to RGB or HSV
in detection. For gradient orientation features, 6 orientation
bins are used and gradient magnitude. An AdaBoost classifier
is trained in four stages, with number of trees starting at 32
and increasing by a factor of 4 in each stage. Bootstrapping
is performed at each stage, with hard negatives collected and
used for re-training. We experimented with additional feature
channels, such as different transformations for extracting skin
colored pixels using a learned skin-likelihood classifier. We
found no benefit over using the simple LUV color features
(Fig. 3).

As mentioned, the hand detector runs at 30 fps on a CPU,
which we found crucial for analyzing hours of captured video
quickly. We noticed many of the false detections occurring

in the proximity of the actual hand (the arm, or multiple
detections around the hand). Therefore, window size and
padding had a significant effect on false positive rates (see
Fig. 3). Neighboring responses were removed using non-
maximum suppression with a threshold of 0.2.

Left and right hand classification: Hand proposals
provided by the hand detector are given to a binary linear
Support Vector Machine (SVM) [11] for left and right hand
classification. The already computed gradient features are
used. Color cues were not shown to be beneficial for the
left/right classification. Finally, detections are tracked using
a standard Kalman filter.

III. TRAJECTORY LEARNING

The output of the hand detector is used as part of an
activity modeling framework. Common applications with
trajectory studies (e.g. surveillance) involve a set of assump-
tions which may not hold in our data, such as a pre-defined
number of points of ‘entry’ and ‘exit’ of the moving agents
for defining the activities [12]. Furthermore, trajectories
that are similar semantically may contain large performance
variability. For example, turning maneuvers may begin or
end anywhere on the wheel, with varying velocity profiles,
or with one or two hands. At times, turning may produce a
very slight change in hand positions, yet we would like to
recognize such events. Temporal events of no motion, which
usually provide temporal segmentation information, are also
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Fig. 4: Depiction of successful detection results (top two rows) and challenging settings (bottom row). The method is shown
to be robust to moderate occlusion by objects in the car, self-occlusion, variation in pose and rotation. Nonetheless, false
positives still occur under heavy illumination variability. These are handled by tracking.

difficult to interpret. In our domain, such ‘stop’ states can
occur during turns, lane changes, or regular driving, and are
therefore not trivially defined. In addition to distinguishing
among subtle and intricate movements, gesture performance
is also effected by the preferred neutral hand position of the
driver. Because of the uniqueness of the trajectories, we turn
to a careful study of both the appropriate choice of trajectory
features and the temporal modeling technique.

A. Trajectory Features

The following trajectory features are studied.
Position features: A signal of the position of the hands

in each frame,

F jt = (f jt−L+1, . . . , f
j
t ) (1)

with j ∈ {1, 2, 3, 4} so that for each dimension of
position and each hand we obtain a windowed time series
(for a total of L × 4 sized descriptor. That is, f jt ∈
{xleftt , yleftt , xrightt , yrightt } which are the image plane po-
sitions provided by the hand detector. L is the trajectory
length.

In addition to these, trajectory shape and dynamic infor-
mation can be captured in the following features.

Displacement features: Given the component displace-
ments at time t, ∆ft = ft− ft−1, the displacement features
for the trajectory are

V jt = ∆F jt = (∆f jt−L+1, . . . ,∆f
j
t ) (2)

Normalized displacement features: Inspired by [13], the
displacement feature vector is normalized by the sum of the
magnitudes of the displacement vector

V̄ jt =
∆F jt∑t

i=t−L+1 ||∆f
j
i ||

(3)

Transition histogram of displacements: Proposed in
[14], this histogram descriptor utilizes quantization of the
displacements in V into three levels of magnitude after
normalization by the maximum displacement magnitude in
the trajectory. Orientation is binned into 8 sectors of the unit
circle, producing a total of 24 quantization bins. Finally, a
zero displacement bin is added. A transition matrix counts
the frequency of occurrence from the consecutive entries
in V . The final histogram descriptor is therefore of size
25× 25 = 625.

Temporal pyramid of Fourier coefficients: For each
dimension of F , the short Fourier transform [15] is applied
and the low frequency coefficients are used. The trajectory
F is recursively partitioned into levels to further capture
temporal structure of the trajectory. In our experiments, we
use two levels of partitioning the original trajectory, as no
gains were made by further partitioning.

B. Temporal Modeling

Characterization of trajectory paths involves learning of
the temporal dynamics of the hand movement. Four super-
vised modeling techniques are compared. An SVM classifier
is studied with a linear kernel and a non-linear RBF kernel
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Fig. 5: A dataset of transition reaching and retracting gestures is used for the experiments. Left hand trajectories are shown
in red and right hand trajectories are shown in green. Trajectory color encodes time, with brighter being more recent in the
trajectory. Shown are reaching gestures to left side rest, gear, and instrument cluster.

[11]. Both the regularization parameter C and the spread
parameter γ are grid optimized. As a classical benchmark for
temporal modeling, a Hidden Markov Model (HMM) learned
using the Baum-Welch method and expectation maximization
(EM) [16] is also evaluated. The available implementation
of [17] is used, and the number of states is optimized
over {1, 3, 5, 7}. A more recent development over the HMM
was demonstrated with Conditional Random Fields (CRF).
We employ the Latent-Dynamic CRF (LDCRF) [18], which
provides an advantage over HMM due to discriminative
training.

IV. EXPERIMENTAL SETTINGS

The model and features will be evaluated in terms of three
performance measures.

Activity classification: Each motion pattern is manually
annotated with a starting frame and an end frame, interpo-
lated to be the same size (a 20-dimensional vector), and
classified into a pre-defined set of activities. The purpose
of these experiments is to compare the performance of dif-
ferent features and classifiers. Cross-subject cross-validation
is employed, where training and testing are done on disjoint
subjects. Such cross-validation is employed in all of the tests
below as well. Furthermore, we use normalized accuracy
as the performance metric, where true positives in each class
are normalized by the number of instances in the class before
the final averaging. This takes care of unbalanced classes in
evaluation.

Activity prediction: Assume an event annotation ending
at a certain time, te. In prediction, we query the model
δ seconds before te (i.e. at te − δ) for a label given the
sequence of observations Fte−δ . There are two possible
training procedures. In one, referred to as the fixed model
procedure, only one model is trained over the annotated
events once. That model is used for prediction at different δ
values in testing. In the second procedure, referred to as the
shifted model, a model is trained on samples shifted by δ
(i.e. shifting δ involves re-training) and tested on the δ-shifted
test samples. Both procedures allow for activity prediction,
but the shifted model case requires the evaluation of multiple
models corresponding to trajectory patterns specific to each
choice of δ.

Abnormal event detection: Measuring the quality of
the modeling can also be done on a semantic level. Can

the models be used in order to distinguish critical events
specific to our application domains? The important notion
of ‘abnormality’ is a useful measure for evaluating the
framework. It also allows for direct comparison with data-
driven learning of models using unsupervised techniques.
Traditionally, novelty detection is achieved by inspecting the
scores provided by the temporal models. This is expressed in
low log-likelihood scores for a CRF or HMM model. For the
SVM models, we employ the point to hyper-plane distance
as a confidence measure. SVM scores are normalized using
coupling approaches [11]. In all cases, a cursor for the
maximum posterior probability is thresholded in order to
detect an abnormal event,

max
c∈{1,...,C}

P (c|F ) < εabnormal (4)

in a C class problem. Due to the highly complex nature of
the hand trajectories, unsupervised approaches for obtaining
the motion path labels may also be of interest. We also evalu-
ate a data-driven, unsupervised trajectory analysis framework
using fuzzy C-means clustering [12] and a outlier-aware K-
means algorithm. In the latter case, the standard K-means
iteration is performed, but at every step we use the Euclidean
distance in order to discard samples that are distant from the
centroid of the clusters before updating of the new centroids.
The number of samples to discard is chosen according to
a parameter which is fixed in each iteration. Both of the
clustering algorithms contain a notion of outliers, which is
essential for learning models for abnormality detection.

V. EXPERIMENTAL EVALUATION

In order to evaluate the framework a video dataset com-
posed of over an hour of driving was used. The analysis is
focused on hand motion patterns which are clearly defined
and are important for the study of attentiveness-reaching and
retracting trajectories. Reaching motions involve hand-object
interaction associated with secondary in-vehicle tasks.

Dataset: A total of 60 trajectory instances were annotated
in terms of start and end, focusing on transition motions.
Six classes were defined among the four regions of wheel,
instrument cluster, gear shift, side rest. All trajectories must
initiate or terminate on the wheel. Visualization of some of
the samples is shown in Fig. 5. As the six reaching and
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Fig. 6: Evaluation of the trajectory features studied in activity classification. (a) Position features (F) are shown to work
well. The abbreviations are: VVV -displacement features, V̄̄V̄V -normalized displacement features, TM-transition histogram of
displacements, and TP-temporal pyramid of Fourier coefficients. (b) Given the annotated end of a gesture, we optimize for
the temporal window size L of the time series. A 0.75 seconds window is shown to work best, and is used in the activity
prediction experiments.
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Fig. 7: Evaluation of the four modeling techniques in terms of predictive power is shown in (a) and (b). The black line
depicts the random guess case. In fixed model, one model is obtained by training once using the annotated events. In shifted
model, a model is learned for each δ time before an event. (c) Detecting abnormal hand activities using supervised clusters,
or data-driven unsupervised clusters using K-means with outlier removal or fuzzy C-means (FCM).

retracting classes are somewhat separated in position in the
image space, they are a good choice for validation and study
of the different temporal features and models. Increasingly
intricate motion patterns can be defined in the future. All
experiments employ cross-subject cross validation, where
training and testing is performed on disjoint subjects.

For abnormal event detection, 36 events of abnormal
activity were annotated. These are events that are seman-
tically abnormal when compared to the previous six classes
of gestures which are commonly performed while driving.
These include rear-mirror adjustment, driver touching the
face, and driver reaching back over the shoulder to inspect
and perform a reverse maneuver. Most of these involve a
hand motion that is not only when abnormal compared to
the six defined gesture classes, but might also be considered
abnormal in certain driving scenarios (e.g. on a highway).
User-specific event definition and study is left for future
work.

Feature analysis: On the transition motions dataset, po-

sition features alone were shown to work well out of the
five types of trajectory features studied, with no clear benefit
by the explicit addition of dynamic features. The analysis
is shown in Fig. 6(a) in terms of the average normalized
accuracy and standard deviation over the cross validation.
Furthermore, given an event annotation, the optimization for
the window size L to include in computation of the trajectory
features is shown in Fig. 6(b). Both the position features
and a window size of 0.75 seconds are employed for the
remainder of the experiments. The results were produced
with a linear SVM.

Temporal modeling: The four classification techniques
are evaluated in terms of predictive power. As mentioned
in Section IV, prediction can occur using two procedures.
Overall trends are similar in both of the procedures, as shown
in Fig. 7. In fixed model, where one model is trained on
the annotated event end (δ = 0) and evaluated at different
δ values to produce predictions, an SVM with an RBF
kernel is shown to work best, while a linear SVM tops for
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(a) Prediction of wheel to instrument panel reaching. (b) Prediction of wheel to gear shift reaching.

Fig. 8: Early classification of hand motion patterns. In blue is the current and previous hand trajectory (with the actual
corresponding frame shown for each instance). Red crosses depict the previous hand locations in the trajectory. We plot
the top three trajectories (centroids by averaging) matching to the current trajectory with the SVM probability score. Only
right hand information is shown for clarity. In (a), notice how a large horizontal trajectory from the left part of the wheel
is classified correctly as towards instrument cluster. In (b) note how a more difficult sample is first classified incorrectly as
towards instrument cluster, but as more information becomes available the gear reaching label is correctly predicted.

classification of the gestures at δ = 0. The trend is similar
for the shifted model procedure (Fig. 7(b)), yet prediction
rates improve overall due to the training on the shifted time
series. Common ambiguous trajectories occur in reaching
gestures, where a hand may reach towards the lower part
of the instrument cluster or the gear shift. An example is
shown in Fig. 8(b).

Abnormal event detection: The preliminary results in
Fig. 7(c) shows the data-driven approach with a membership
threshold using fuzzy C-means works best. In the future,
unsupervised discovery of events would be essential for
representing user-specific motion patterns, such as a driver’s
neutral hand position.

VI. CONCLUDING REMARKS

This work studied vision-based hand activity analysis.
In order to tackle the intricate nature of the trajectory
problem in naturalistic driving studies, multiple temporal
trajectory features and classification schemes were studied
in supervised settings. The framework showed promise in
important applications in the context of driver safety and
assistance, such as classification and prediction of gestures.
The transition gestures studied and other visual-manual tasks
may be correlated with head cues [19], and their integration
will be studied in future work. Drive analysis techniques
[20] could also benefit from hand information. Unsupervised
techniques will play a key role in future work as they may
allow to better capture the full range of naturalistic hand
motion patterns.
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