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Abstract— Vehicle detection is a key problem in computer
vision, with applications in driver assistance and active safety.
A challenging aspect of the problem is the common occlusion
of vehicles in the scene. In this paper, we present a vision-
based system for vehicle localization and tracking for detecting
partially visible vehicles. Consequently, vehicles are localized
more reliably and tracked for longer periods of time. The
proposed system detects vehicles using an active-learning based
monocular vision approach and motion (optical flow) cues. A
calibrated stereo rig is utilized to acquire a depth map, and
consequently the real-world coordinates of each detected vehi-
cle. Tracking is performed using a Kalman filter. The tracking
is formulated to integrate stereo-monocular information. We
demonstrate the effectiveness of the proposed system on a
multilane highway dataset containing instances of vehicles with
relative motion to the ego-vehicle.

I. INTRODUCTION
The number of on-road fatalities amounts to tens of

thousands of fatalities each year in the United States alone
[1]. Hence, there’s a considerable interest in developing
active safety systems. Fast and reliable monitoring of the
vehicle’s surround can provide assistance to save lives and
potentially reduce accidents in severity and number. An
automated vision system for detecting and tracking vehicles
may be incorporated with other surround analysis and driver
assistance or monitoring systems [2], [3], [4]. Such a system
is an essential part of developing efficient intelligent driver
assistance and autonomous vehicle systems.

The problem of vehicle detection poses several challenges
for a vision-based system. Urban and freeway settings in-
clude shadowing, man-made structures, and ubiquitous visual
clutter can introduce false positives. On top of the variation
in the appearances of the objects to be detected, these objects
are also often partially occluded. The vehicles to be detected
are also encountered in a variety of orientations, including
preceding, oncoming, and cross traffic. Although motion can
be a useful cue under such settings, effects of ego motion
may need to be compensated for [5].

This work aims to generalize an appearance-based vehicle
detector to better detect partially visible vehicles. We term
the system OVeRT (partially Occluded Vehicle Recognition
and Tracking). The general overview of the framework can
be seen in Fig. 1. Detections of vehicles are first made
in the image plane using multiple cues, appearance-based
and motion-based. The appearance-based detector is based
on [6] an active-learning monocular vision approach. The
features used are the Haar-like rectangular features. The
system cannot reliably detect partially occluded vehicles.
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Fig. 1: Overview of the OVeRT (partially Occluded Vehicle
Recognition and Tracking) approach proposed in this paper.

When a vehicle is partially visible, motion cues may
provide information for detecting the vehicle. In the OVeRT
system, optical flow is calculated in search windows to iden-
tify distinctive motion patterns of a vehicle with relatively
different speed than the ego-vehicle. The optical flow is
clustered to produce detections, which are refined with depth-
based clustering. These image plane vehicle localizations can
then be projected and tracked in 3D using a Kalman filter.

In addition to the novelty of improving a previously
proposed vehicle detection system to be more robust to
occlusions, we pursue an integrative approach between the
monocular and stereo-vision domain in tracking of the vehi-
cles. While sensor fusion has shown promise in combining
complimentary modalities for increased performance [8],
[9], [10], [11], [12], integrating cues from the domains
of monocular and stereo-vision for vehicle detection and
tracking is still an immature field.

Recently, Sivaraman and Trivedi [7] incorporated infor-
mation from both the monocular and stereo-vision sources
in order to track vehicles detected in the image plane. By
formulating the tracking problem using both modalities, each
vehicle’s state is estimated in both image and 3D coordinates.
The combined domain tracking performs in a higher overall
detection true positive rate. The system runs at 46ms per
frame. Since the initial detections rely on appearance-based
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Fig. 2: Current limitations of the appearance-based baseline system in [7]. (a) Vehicle in left lane after 41 frames since
entering the field of view is not fully visible, and is missed by the detector. (b) Example of a phenomenon of overtaking
vehicles being detected with a partial bounding box, then detection is lost for several more frames before reliable detection
and tracking is achieved. Vehicle on the right is partially covered by the detection box, 37 frames since entering the scene.
Only after 7 more frames the box returns with a reliable and continuous detection. (c) On a multilane highway, some vehicles
may be only visible while they enter the field of view in an overtaking motion, and later become occluded by either another
vehicle, existing from where entered in a backward relative motion, or simply become too distant to detect, thereby never
being detected at all throughout their trajectory. The vehicle on the far left lane is at 51 frames since entering the scene
with a higher relative speed to the ego-vehicle, never to be detected by the appearance-based detection process.

Haar-like features, the detections are currently limited ve-
hicles that are entirely visible (Fig. 2). We therefore build
upon the work in [7] to integrate additional cues from the
two domains into the OVeRT system.

We use optical flow-based clustering to identify additional
vehicles who would be missed with an appearance-based
only detector. These vehicles are at the adjacent lanes
exhibiting distinct motion (in opposite direction to most
of the rest of the scene) while overtaking the ego-vehicle.
The experiments were taken place using data collected on
multilane highways. Vehicles with different relative motion
in nearby adjacent lanes, or the lanes next to those, were
analyzed. Since the appearance-based method for vehicle
detection poorly detects a vehicle at the periphery of the
view, with inaccurate detections (i.e. bounding boxes not
fully covering the visible portion of the vehicle - Fig. 2),
motion cues from the two modalities will complement the
systems in [7], [6].

II. RELATED RESEARCH

This work is concerned with object detection from monoc-
ular and stereo-vision, as well as occlusion handling and
overtaking vehicle detection techniques. Hence, we review
state-of-the-art vehicle detectors using each of these two
modalities, and then turn to relevant appearance and motion-
based features for incorporating the domains.

Vehicle detection based on monocular input generally
employs techniques relying on an appearance-based feature
set. A review can be found in [13]. Common methods draw
upon a Haar-like feature set and a cascade structure for
the selection of features [14]. Another common appearance-
based feature set follows Dalal and Triggs [15]. In order to
increase the invariance of these methods to partial visibility
and different orientations, recent efforts include the work
of Felzenszwalb et al. [16], which was utilized in [17] for

vehicle detection using the deformable part-based model and
a Latent SVM.

Stereo-vision techniques for vehicle detection may incor-
porate 3D information to detect and track vehicles using
geometric models and temporal filtering. Different segmen-
tation methods are usually employed. Barrois et al. [18]
used clustering of optical flow for a foreground separation
based on motion. Next, the pose of the vehicles proposed
in the first step by the motion segmentation is estimated by
fitting a cuboid geometry to the vehicle using a modified
Iterative Closest Point algorithm. Hermes et al. [19] achieved
stereo-based vehicle detection and tracking using a two-stage
mean-shift algorithm. A particle motion pattern is utilized for
learning trajectory patterns. Pantilie et al. [20] used depth
maps with optical flow to acquire the 3D position, velocity,
and orientation information of vehicles and pedestrians, pro-
viding a general methodology for using stereo-vision input
for separating moving objects from static ones. Lefebvre
and Ambellouis [21] used Mean-shift tracking of 3D point
clouds, forming objects using sparse stereo-matching. Per-
rollaz et al. [22] used optical flow and a spatio-temporally
smoothed occupancy grid. Erbs et al. [23] also incorporate
motion-based features by tracking stixels and fitting a cuboid
model for vehicle detection. In general, due to the movement
of the camera, successfully incorporating motion features
into vehicle detection schemes is challenging, as the camera
motion needs to be accounted for. This may be done using
ego-motion compensation [5], [24] or long-term analysis of
point trajectories [25].

As part of the OVeRT framework, cues from both monoc-
ular and stereo-vision domains are incorporated in order to
track vehicles. We review previously suggested techniques
for such cue integration. The use of both monocular and
stereo-vision cues typically manifests itself in the use of
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monocular vision for detection, and stereo-vision for 3D
localization and tracking. Stein et al. [9] showed that monoc-
ular vision can detect objects that are missed in stereo-vision
approaches when objects lie close in 3D space. Toulminet et
al. [26] combined input from the two domains to detect and
track the preceding vehicles in the ego lane. The depth image
is used for segmentation and edge extraction. These are
combined with monocular-based features, such as symmetry
operators, for the final detection. Tracking is performed
by employing cross-correlation over the frames. Sivaraman
and Trivedi [7] showed that formulating the tracking of
the monocular appearance-based vehicle detections using an
approach fusing both monocular and stereo domains was
superior to tracking in the image plane alone. Depth-based
features can be used to reduce occlusion-related errors. HOG
applied to the monocular image, optical flow image, and
depth image, were combined as an input to a SVM in
[8] for pedestrian detection showing improvement in the
performance on occluded objects.

We extend the vehicle detection and 3D tracking system
using stereo-monocular fusion proposed in [7] to include
detection and tracking of non-rear view objects, such as in
the case of overtaking vehicles. Cues from both domains
are integrated to achieve this goal. Since appearance-based
features are prone to occlusions and varying appearance,
they tend to produce high false positive rates in complex
driving environments. Furthermore, a trained appearance-
based classifier on vehicles’ rear is not sufficient for detection
of vehicles at different orientation views, such as in the
case of overtaking vehicles. In such cases, motion-based
features have been shown to work well. Recently, Garcia
et al. [27] combined radar and optical flow derived from
monocular images for overtaking vehicle detection. Based
on the candidate objects given by the radar modality, optical
flow is used in a particular forward direction and threshold
to determine an overtaking vehicle. The optical flow is
calculated in a window around the radar detection. The
motion features were shown to be useful during night time
as well.

III. PARTIALLY OCCLUDED VEHICLE RECOGNITION AND
TRACKING (OVERT) IN 3D

The novelty of this work lies in further generalizing an
object detection system to handle partially occluded vehicles.
In particular, we would like to leverage the distinct motion
cues of overtaking vehicles since they enter the field of
view and until they become fully visible. We first detail
the algorithm for fully-visible vehicles, and then the OVeRT
development.

A. Fully-Visible Vehicle Detection and Tracking using
Stereo-Monocular Cues

A vehicle detector from monocular input was trained
using an Adaboost cascade of Haar-like rectangular features,
as mentioned in [6], [14]. An active-learning framework
was employed using two stages. First, an initialization of
the classifier is performed in a supervised manner using

a set of positive target class and negative class. Next, in
the query and retraining stage, the classifier was evaluated
on an independent dataset and retrained to include missing
and false positive detections. Active-learning has shown to
significantly increase the performance of a classifier for
vehicle detection [28].

The left monocular image and the depth image were
calibrated to have the same coordinate system. Because
the depth map contains significant noise, spatial filtering
provides an improved estimation. For a given bounding box,
parametrized by its top left corner coordinates, width, and
height, as described in Equation 1, we calculate the median
of the window to define the longitudinal distance of the
vehicle (Equation 2).

vk = [ik jk wk hk]
T (1)

Zk = median(Dvk),

Dvk = {depth pixels in vk}

Hence we can derive the real-world coordinates of the vehicle
by projecting the centroid of the box, using Zk, to get the
other two 3D coordinates, Xk and Yk. This provides the full
state vector, given in Equation 2.

Vk=[ik jk wk hk Xk Yk Zk ∆Xk ∆Yk ∆Zk]
T (2)

Vk+1 =

I4×4 0 0
0 I3×3 ∆tI3×3

0 0 I3×3

Vk + ηk

Mk =
(
I7×7 0

)
Vk + ξk (3)

Each vehicle is tracked using a single Kalman filter, with
the full state-space system given in Equation 3, where ηk
and ξk are the plant and observation noise, respectively. The
state transition matrix and the observation matrix are given
in 3 as well.

B. Motion-based Vehicle Detection of Partially Visible Vehi-
cles

In order to localize vehicles in the two search windows
(shown in Fig. 1), we combine bounding box proposals,
both from an optical flow-based clustering and depth-based
segmentation. Only nearby objects are looked upon for
overtaking motion, hence we threshold the depth image
to produce a set of vehicle bounding boxes proposals, vjd,
j = 1, 2 (for the left and right search windows). The resulting
image undergoes morphological opening with a disk-shaped
structuring element of radius 4. We search for the largest
connected component in each of the left and right search
windows.

Next, the optical flow is computed in the search windows
and filtered so that only optical flow in the orientation of
the overtaking motion is kept and used for clustering of
pixels with similar motion. Optical flow is a well known
computer vision technique for motion estimation. We use a
parallel implementation of the coarse-to-fine Lucas-Kanade
[29] optical flow algorithm.
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Optical flow is derived based on the constraint of a con-
stant brightness profile. The approximation for the solution
produces the velocity components (Vx, Vy) for an image
I(x, y). These can be used to determine a magnitude and
an orientation, (∆, θ).

Flow Attributes Several methods for transforming the
flow to a descriptor will be explored. As a baseline a
histogram of flow vectors and linear SVM scheme is used.
Alternatively, within each frame we may restrict to pixels
i = (x, y) in the m×n discrete image signal I , with optical
flow orientation within a certain range. For instance,

ΘI = {i ∈ I|θ (i) ∈
[
0,
π

2

]
}

for detecting left overtaking motion. Alternatively, for the
right search window we use the range

[
π
2 , π

]
. Next the

optical flow vectors that fit the appropriate range above are
clustered together into one, inclusive bounding box, vjOF ,
for j = 1, 2. Angular restriction limits the flexibility of
the system-as not all overtaking scenarios will produce such
optical flow. Nonetheless, such an approach is experimentally
validated to be much superior to the baseline. Following
a similar approach for undertaking and overtaking vehicles
with relative motion to the ego-vehicle was also successful.

Given such set of motion vectors, we can perform a clas-
sification of overtaking occurrences by choosing a function
ϕ(∆I) : R|ΘI | → R, and thresholding it. We compare three
choices: Entropy, L1-norm, and L2-norm. The frequency of
vector occurrences in a certain direction, |ΘI | (the Cardinal-
ity) is also of interest.

A detection event must last longer than two consecutive
frames in order to be inputted to the tracker described
in Section III-A. The detection bounding box is given by
the intersection of the bounding box from the optical flow
clustering and the depth-based clustering, vOT = vjOF ∩ v

j
d.

Finally, once the vehicle becomes fully visible and is
detected by the appearance-based detector in Section III-
A, we associate the tracks using the minimum euclidean
distance in 3D of the centroids of the bounding boxes:

kt+1 =
kt

argmin ‖ctOT − ct+1
k ‖2 (4)

where vt+1
k are all the detections bounding boxes at time

t + 1, with centroids ct+1
k ∈ R3, and ctOT ∈ R3 is the

centroid of the bounding box of vOT , the bounding box of
the overtaking vehicle given by the optical flow and depth-
based clustering.

IV. EXPERIMENTAL EVALUATION AND DISCUSSION

A. Experimental Setup in LISA Testbeds

Data has been captured using a stereo rig, looking forward.
Video of the left and right monocular images, and the depth
image which is aligned with the left view is captured at
a resolution of 500 × 312 at 25 fps. Stereo matching is
implemented using [30].

Fig. 3: Vehicle localization of partially occluded vehicles as
they enter the scene in a relatively higher speed. OVeRT’s
tracking is initialized, on average, within 0.32 seconds or 8
frames of the vehicle entering the field of view (standard
deviation = 0.23 seconds). On the other hand the baseline
appearance-based only detection system [7] detects such
vehicles on average within 2.32 seconds (55.8 frames) of
the vehicle entering the scene (standard deviation = 0.90
seconds).

The proposed system was evaluated on multi-lane high-
way driving settings, captured using the calibrated vehicle-
mounted stereo-rig. A total of 60 overtakings were annotated
from 4 video sequences, providing about 4800 frames of
annotated positive examples. Furthermore, 5000 frames were
annotated with negative examples, of either no vehicle in the
motion-based detector search windows or when the vehicles
there were being overtaken by the ego-vehicle. Overtaking
was defined as a vehicle at a higher speed entering the scene
from the left or the right nearby lanes, as well as the lanes
next to those. The instance a part of the vehicle was visible
in the video to a human was defined as the beginning of
the overtaking. This allows us to evaluate how long into
the overtaking each detector fires up, OVeRT or the baseline
detector and tracker from [7], and compare the two. Usually,
the vehicle becomes fully-visible and is detected by the
appearance-based detector. Nonetheless, in some instances
the appearance-based detector never fires up, from the time
the vehicle enters the field of view and until it disappears. For
instance, a vehicle may begin an overtake but then becomes
steady or slows down (or the ego-vehicle speeds up) resulting
in a backward motion and existing from the scene without
being detected by the system in [7] at all.

The improvement of OVeRT on the baseline in [7] is
depicted in Fig. 3, with a specific example of the detection
and tracking in Fig. 4. Fig. 5 evaluated the performance of
the motion-based detection process of OVeRT on overtaking
vehicles in nearby lanes to the ego-lane. Vehicles in adjacent
lanes produce more optical flow and are easier to detect than
vehicles in the lanes next to those and are further. In Fig. 3,
we note that on average, OVeRT produce reliable detections
within about 8 frames of the vehicle entering the field of
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(a)

(b)

(c)

(d)

(e)

Fig. 4: Evaluation of the performance of the OVeRT system.
(a) Tracking results of an overtaking vehicle’s trajectory
using OVeRT. The baseline system maintains detection only
along the plotted green line. Sequence of images of the
tracked vehicle: (b) A vehicle on the left (black box) with
higher relative motion to the ego-vehicle enters the scene,
image shown is at 4 frames since vehicle entered field of
view. (c) OVeRT tracking begins after two frames using
motion cues, 9 frames since visibility. (d) The scene after 37
frames, before handing the tracking to the Appearance-based
detector, still only motion-based cues. (e) 38 frames since
entering the scene, the vehicle is detected using appearance-
based features only (this is where the baseline method [7]
would have detected the vehicle).

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

 

 

Entropy − Near Only (0.84)
Entropy (0.81)
L1 (0.81)
L2 (0.8)
Histogram+SVM (0.67)
Cardinality (0.56)

Fig. 5: Evaluation of the detections provided by OVeRT
using different motion attributes. In parenthesis is the AUC
measure. ‘Near only’: performance on instances of vehicles
in adjacent lanes to the ego-lane only. See Section III-B for
more detail on the methods.

view, or about 2 seconds before the baseline system in [7]
detects and tracks them. As the vehicles produce a strong
and distinct motion cue very early on, this is expected.

Fig. 3 shows only vehicles in the dataset that were even-
tually detected by one of the detectors or both. It should be
noted, that out of the 60 annotated instances, some vehicles
which overtake are not detected at all throughout their visible
trajectory by both OVeRT and the baseline system. Most of
the missing detections occur due to the challenging choice of
some of the overtaking instances-where a vehicle may begin
an overtake and then become occluded by another vehicle (as
happens with vehicles in the farther lanes). This occurred in
13 out of the 60 annotated samples with OVeRT, and 30 out
of the 60 with the baseline system.

V. CONCLUDING REMARKS AND FUTURE WORK

Vision-based vehicle detection must be robust to the
common partial visibility of the objects. We have proposed
a system which improves upon a baseline for detecting and
tracking vehicles in 3D with different relative motion to the
ego-vehicle. We have explored our approach using a dataset
of overtaking vehicles, where an appearance-based detector
is prone to errors and missed detections. Future work should
involve studying and addressing possible false detections
as a result of the optical-flow motion cue detector. Track
handling, as described in [10] can be used. Additionally,
the threshold method should be further tested and compared
with other possible approaches under more intricate urban
settings. Clustering based on long-term point trajectories in
the image can provide more reliable motion saliency cues, as
well as allow for motion-cue integration in the entire scene,
as opposed to just in the periphery.

1354



VI. ACKNOWLEDGEMENTS

We acknowledge the support of the UC Discovery Pro-
gram, associated industry partners, and our UCSD LISA
colleagues. We thank the reviewers for their constructive
comments.

REFERENCES

[1] “Traffic safety facts,” National Highway Traffic Safety Administration,
Washington, D.C., Tech. Rep. DOT HS 811 402, 2011. [Online].
Available: http://www-nrd.nhtsa.dot.gov

[2] A. Doshi, S. Y. Cheng, and M. M. Trivedi, “A novel active heads-
up display for driver assistance,” IEEE Trans. Syst. Man Cybern. B,
Cybern., vol. 39, no. 1, pp. 85–93, 2009.

[3] B. T. Morris and M. M. Trivedi, “Vehicle iconic surround observer:
Visualization platform for intelligent driver support applications,” in
IEEE Conf. Intell. Veh. Symp., 2010.

[4] T. Gandhi and M. M. Trivedi, “Vehicle surround capture: Survey
of techniques and a novel omni video based approach for dynamic
panoramic surround maps,” IEEE Trans. Intell. Transp. Syst., vol. 7,
no. 3, pp. 293–308, Sep. 2006.

[5] ——, “Parametric ego-motion estimation for vehicle surround analysis
using an omnidirectional camera,” Machine Vision and Applications,
vol. 16, no. 2, pp. 85–95, 2005.

[6] S. Sivaraman and M. Trivedi, “A general active-learning framework for
on-road vehicle recognition and tracking,” IEEE Trans. Intell. Transp.
Syst., vol. 11, no. 2, pp. 267–276, Jun. 2010.

[7] S. Sivaraman and M. M. Trivedi, “Combining monocular and stereo-
vision for real-time vehicle ranging and tracking on multilane high-
ways,” in IEEE Conf. Intell. Trans. Syst., 2011.

[8] M. Enzweiler, A. Eigenstetter, B. Schiele, and D. M. Gavrila, “Multi-
cue pedestrian classification with partial occlusion handling,” in IEEE
Conf. Computer Vision and Pattern Recognition, 2010.

[9] G. Stein, Y. Gdalyahu, and A. Shashua, “Stereo-assist: Top-down
stereo for driver assistance systems,” in IEEE Conf. Intell. Veh. Symp.,
Jun. 2010, pp. 723–730.

[10] Y.-C. Lim, C.-H. Lee, S. Kwon, and J. Kim, “Event-driven track
management method for robust multi-vehicle tracking,” in IEEE Conf.
Intell. Veh. Symp., 2011.

[11] T. Kowsari, S. Beauchemin, and J. Cho, “Real-time vehicle detection
and tracking using stereo vision and multi-view adaboost,” in IEEE
Conf. Intell. Trans. Syst., 2011.

[12] Q. Baig, O. Aycard, T. D. Vu, and T. Fraichard, “Fusion between laser
and stereo vision data for moving objects tracking in intersection like
scenario,” in IEEE Conf. Intell. Veh. Symp., 2011.

[13] S. Sivaraman and M. M. Trivedi, “A review of recent developments
in vision-based vehicle detection,” in IEEE Conf. Intell. Veh. Symp.,
2013.

[14] P. Viola and M. Jones, “Robust real-time face detection,” IEEE Intl.
Journal of Computer Vision, vol. 57, no. 2, pp. 137–154, 2004.

[15] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in IEEE Conf. Computer Vision and Pattern Recognition,
2005.

[16] P. Felzenszwalb, R. Girshick, and D. McAllester, “Cascade object
detection with de-formable part models,” in IEEE Conf. Computer
Vision and Pattern Recognition, 2010.

[17] A. Takeuchi, S. Mita, and D. McAllester, “On-road vehicle tracking
using deformable object model and particle filter with integrated
likelihoods,” in IEEE Conf. Intell. Veh. Symp., Jun. 2010.

[18] B. Barrois, S. Hristova, C. Wohler, F. Kummert, and C. Hermes, “3D
pose estimation of vehicles using a stereo camera,” in IEEE Conf.
Intell. Veh. Symp., 2009.

[19] C. Hermes, J. Einhaus, M. Hahn, C. Wohler, and F. Kummert, “Vehicle
tracking and motion prediction in complex urban scenarios,” in IEEE
Conf. Intell. Veh. Symp., 2010.

[20] C. Pantilie and S. Nedevschi, “Real-time obstacle detection in complex
scenarios using dense stereo vision and optical flow,” in IEEE Conf.
Intell. Trans. Syst., 2010.

[21] S. Lefebvre and S. Ambellouis, “Vehicle detection and tracking using
mean shift segmentation on semi-dense disparity maps,” in IEEE Conf.
Intell. Veh. Symp., 2012.

[22] M. Perrollaz, J.-D. Yoder, A. N. andgre, A. Spalanzani, and C. Laugier,
“A visibility-based approach for occupancy grid computation in dis-
parity space,” IEEE Trans. Intell. Transp. Syst., vol. 13, no. 3, pp.
1383–1393, 2012.

[23] F. Erbs, A. Barth, and U. Franke, “Moving vehicle detection by optimal
segmentation of the dynamic stixel world,” in IEEE Conf. Intell. Veh.
Symp., 2011.

[24] K. S. Huang, M. M. Trivedi, and T. Gandhi, “Driver’s view and
vehicle surround estimation using omnidirectional video stream,” in
IEEE Conf. Intell. Veh. Symp., 2003.

[25] T. Brox and M. Jitendra, “Object segmentation by long term analysis
of point trajectories,” in European Conf. of Computer Vision, 2010.

[26] G. Toulminet, M. Bertozzi, S. Mousset, A. Bensrhair, and A. Broggi,
“Vehicle detection by means of stereo vision-based obstacles features
extraction and monocular pattern analysis,” IEEE Trans. Image. Proc.,
Aug. 2006.

[27] F. Garcia, P. Cerri, A. Broggi, A. de la Escalera, and J. Armingol,
“Data fusion for overtaking vehicle detection based on radar and
optical flow,” in IEEE Proc. Intell. Veh. Symp., 2012.

[28] S. Sivaraman and M. M. Trivedi, “Active learning for on-road vehicle
detection: A comparative study,” Machine Vision and Applications,
2011.

[29] B. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereo vision,” in Proc. of Imaging Unertstand-
ing Workshop, 1981.

[30] (2011, Jan. 27) Tyzx dense stereo. [Online]. Available:
http://www.tyzx.com.

1355


