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Abstract— This paper studies the usefulness of appearance
patterns for the challenging task of pedestrian detection. Despite
appearance specific models being common in rigid object
detection, the technique is still little understood for pedestri-
ans. Three main approaches for reasoning over orientation,
occlusion, and visual cues in obtaining the appearance patterns
are compared. This work demonstrates that large gains in
detection performance (up to 17 AP points on the challenging
KITTI dataset) can be made using a state-of-the-art pedestrian
detector.

I. INTRODUCTION

In recent years, pedestrian detection has attracted tremen-
dous interest in the research community. Although challeng-
ing, accurate detection of people has many potential appli-
cations both in the intelligent vehicles domain [1], [2] and
other human-observing application domains. A motivating
force propelling the field forward has been improving the
quality of extracted image features [3]–[5]. For instance,
a combination of gradient, color, local binary patterns, re-
gion covariance, and spatial pooling produced state-of-the-
art results [6] on the Caltech pedestrian detection benchmark
[7]. KITTI pedestrians results [8] have also shown a similar
trend [9]. Local de-correlation of gradient and color features
was proposed in [10] with considerable improvements due
to better generalization of the model.

This paper studies an alternative method for improving
detection results to the aforementioned. The general idea is
to produce specific appearance patterns from the data which
allows for training models for varying aspect-ratio, orienta-
tion, occlusion, or other visually challenging settings. The
method builds upon the fast pedestrian detection framework
of aggregate channel features (ACF) [11], [12]. In ACF,
a set of 10 channel features are computed efficiently and
classified in a sliding window manner. Approximation of
features at some of the scales of the feature pyramid allows
for further speedups. We demonstrate that learning multiple
models for different types of pedestrians, produces significant
improvement in detection performance when compared to
training one detector (referred to as the ‘monolithic’ case)
over the entire pedestrian dataset.

The main cost is in speed reduction due to evaluation
of multiple models over the feature pyramid. Nonethe-
less, incorporation of richer features also generally comes
with a large speed reduction. For instance, the method
in [13], which studies different haar-like patterns on the
gradient+LUV feature channels takes about 1.6 seconds on
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640×480 images. On the other hands, ACF reaches over 30
frames per second (fps) on the same image size. Evaluation
of multiple models only gracefully reduces run-time speed,
while also providing improved detection performance. For
instance, the baseline ACF model runs at a little under 9 fps
for 1242×375 with similar settings to [11] on a desktop CPU
machine. Adding 8 component models reduces run-time to
7 fps with the same environment.

In this work we study performance improvement due to
increasing modeling capacity. This is done by partitioning
the data into smaller, better-handled clusters. The resulting
specialized models improve the overall modeling capacity
and provide semantic information [14]. Improving modeling
capacity have been then in literature in different ways. For
instance, the notion of parts, in particular head, upper, and
lower body, contain useful cues for pedestrian detection [15],
[16]. The deformable parts model (DPM) is another well
known example [17], where parts are latent and learned by
employing a latent SVM. We note that generally DPM and
ACF has been compared side-by-side, yet ACF employed a
single rigid model and DPM employs a multiple components
model. Hence a careful examination of a multi-component
ACF is a natural extension.

Rigid object detection has shown significant gains in
performance by learning aspect-ratio, orientation, and/or oc-
clusion specific models [18]–[22]. Nonetheless, the extension
to pedestrians is not straightforward. This work studies three
methodologies of extracting appearance patterns for training
the detectors. Since each detector is now specialized towards
a specific appearance pattern, evaluation in test time is fast
with non-pedestrian windows being rejected early in the
cascade. The method is suited for parallelized systems as
well as each appearance cluster component model is is
evaluated independently.

For the experiments, the challenging KITTI dataset [8]
is employed which contains 7481 images and over 3000
pedestrians. The dataset is split as is into two, a training
set and a validation set of the same number of images. All
types of pedestrians at all occlusion levels and sizes (greater
than 25 pixels in height) are used, which is quite challenging
(‘hard’ settings as defined in [8]). In training, images are
flipped to double the number of pedestrians available.

II. BASELINE DETECTOR

AdaBoost [11] is learned using depth-2 decision trees as
weak classifiers. Detection at multiple scales is handled using
approximation of features at nearby scales with a power law
[23]. Given an image, a set of image channels are computed.
Six gradient orientation channels and three LUV (color space
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Fig. 1: The proposed approach learns multiple specialized AdaBoost models from the pedestrian dataset as opposed to a
train on all approach.

Fig. 2: Example orientation clusters obtained for pedestrian detection on KITTI. The images in each clusters are averaged
to produce the visualized mean image, and a rose plot shows a histogram count of orientation values within the cluster. Best
viewed in color on a computer screen.

(a) M = 2 (b) M = 4 (c) M = 8

Fig. 3: For each occlusion type cluster, an average occlusion map is visualized, where M is the number of occlusion clusters
(for M = 8 only selected clusters are visualized). Note that although only shown for M = 2, the non-occluded instances
cluster is always present.

transformation) occur. The images are pre-smoothed with a
Gaussian filer. Next, the color and gradient image features
are averaged in 4 × 4 blocks in order to produce fast pixel
lookup features (as opposed to the Viola-Jones haar-like type
features). There are four stages of training. In the first stage,
5000 random negatives are collected and a detector is learned
using 32 weak classifiers. Next, three more rounds of hard
negative mining follow, where the number of weak classifiers
are quadrupled in each round up to 2048. Generally, the
last round results in very few hard negatives mined which
shows convergence. This provides a fast training and testing
pipeline, although increasing the number of weak classifiers,
number of allowed negatives, and tree depth can result in
improved detection performance [6].

III. HOW TO OBTAIN THE APPEARANCE PATTERNS?

The training set can be clustered into groups. Generally,
the method in [18], [24] is followed, but it is adapted to
the pedestrian domain. Below are the details of the three
types of features used for for clustering in order to obtain the
appearance models. Throughout the experiments, the model’s
height is kept fixed at 62 pixels, and the width is obtained

from the median in-cluster aspect ratio. Although models at
additional resolutions (as in [18]) were experimentally shown
to significantly improve detection performance (partly due
to better handling of small pedestrians), for simplicity sake
this work concentrates on a best performing single resolution
model.

Orientation (B): As shown in Fig. 2, one possible clus-
tering can be induced by orientation. The parameter for
orientation bins in the experiments is referred to as B. KITTI
provides 3D bounding boxes for pedestrians, with a known
orientation in 3D. Samples are binned according to their 3D
orientation, and the template aspect ratio is determined using
the mean aspect ratios in the cluster. Although orientation is
important for object such as cars, the same needs to be shown
for pedestrians.

Occlusion (M ): As mentioned in [7], generally most
pedestrian instances fall into a small set of possible occlusion
configurations. Although KITTI does provide a coarse occlu-
sion metric (little, partial, and heavy occlusion), we hypoth-
esize that this is not sufficient for good disambiguation of
occlusion types. For instance, as heavy occlusion can occur
in several ways over the pedestrian (left, right, bottom, etc.),
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(a) train on ‘moderate’, test on ‘moderate’.
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(b) train on ‘moderate’, test on ‘hard’. (c) train on ‘hard’, test on ‘hard’.

Fig. 4: Impact of adding orientation components (B) over the baseline model which trains a single model over the entire
dataset (B = 1). In each figure, we vary the difficulty in training and testing. Note how incorporation of ‘hard’ samples is
results in lower precision at small recall, but possibly longer curves. Note how learning per-orientation models significantly
improves detection performance.

a rigid model could benefit from further granularity. First,
all the samples are re-sized to a fixed size and processed
to obtain an occlusion map. The process is automatic, as
follows. Using the LIDAR information, for each pedestrian,
we can find all the annotated objects that overlap it while
being closer to the camera. The intersection of these occlud-
ers and the occludee box provide an occlusion value for the
mask. Next, the occlusion masks are clustered using k-means
and are separated by orientation. The clustering process
aims to quantize together similarly occluded pedestrians.
Hence, each binary mask can be measured in similarity to
another by simply checking at each pixel whether both are
1 (occluded) or 0. Therefore, it is natural to use the average
number of pixels that agree over the two occlusion masks
as the similarity metric in clustering. This simple algorithm
produces well aligned clusters, as shown in Fig. 3.

Visual: We also experiment with clustering based on
visual features directly, which may be informative to re-
searchers working on datasets with no 3D orientation avail-
able. Furthermore, in principle rich visual features can cap-

ture many more data-driven appearance variations (e.g. not
just due to orientation or occlusion), thereby providing an
interesting comparison. For features, we employ R-CNN
[25] which is fine tuned on the PASCAL VOC dataset.
Each sample in the entire dataset is re-sized to the expected
dimension for the network in [25]. The dimensionality of
the final feature set for each sample is 4096, and k-means
provides the final clustering assignment.

An AdaBoost model is learned for each cluster, producing
a set of detection models. In test time, each window is scored
independently using the detection models. Detections are
merged using a greedy non-maximum suppression (NMS)
procedure; once a bounding box is suppressed by an overlap
criterion, it can no longer suppress weaker detections.

IV. EXPERIMENTAL EVALUATION

In order to gain further insight into the role of the
appearance patterns in obtaining better modeling capacity,
the approach is evaluated in two ways. First, only ‘moderate’
difficulty samples are used (25 pixels in height and above,

IEEE Intelligent Vehicles Symposium, June 2015 (to appear)



0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

recall

p
re

c
is

io
n

 

 

M=1

M=2

M=4

M=8

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

recall

p
re

c
is

io
n

 

 

M=1

M=2

M=4

M=8

(a) train on ‘moderate’, test on ‘moderate’. (b) train on ‘hard’, test on ‘hard’.

Fig. 5: For a fixed B = 4 orientation bins, what is the impact of adding occlusion clusters? ‘hard’ settings contain a large
number of heavily occluded samples.
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(a) train on ‘moderate’, test on ‘moderate’. (b) train on ‘hard’, test on ‘hard’.

Fig. 6: For a fixed B = 8 orientation bins, what is the impact of adding occlusion clusters?

partial occlusion and truncation up to 30%). Second, training
is done on ‘hard’ difficulty which allows for heavy occlusion
and up to 50% truncation.

As shown in Fig. 4, incorporation of orientation clusters
significantly impacts performance in both of the training
methodologies. Increasing from 1 bin (the baseline which
uses the entire training set) to 4 and 8 bins results in a no-
ticeable AP improvement. Over 4-8 bins produced little to no
gain in performance. Furthermore, it is observed how training
on ‘hard’ samples actually hinders detection performance at
low recall [26], [27]. Occluded samples provide noisy and
difficult cases which are not well resolved by existing state-
of-the-art on KITTI.

Figs. 5 and 6 show the improvement due to incorporation
of occlusion clusters in addition to the orientation clusters
of B = 4 and B = 8, respectively. Here, the occlusion
scheme is shown to better handle ‘hard’ samples in training,
translating to improved performance when such samples are
present. Finally, all of the methods are directly compared in

Fig. 7 on ‘hard’ settings. All are shown to greatly improve
over the monolithic, B = 1 model. Some, such as a four
orientation and two occlusion clusters model (total of 8
clusters, B = 4,M = 2) result in more graceful decline
as detection score threshold decreases and recall increases,
but lower precision at low recall rates. On the contrary,
B = 8 (moderate) which was trained on ‘moderate’ difficulty
is shown to produce the more precise at low recall curves
shown before on ‘medium’ settings. Interestingly, the clusters
do contain some complementary information, as shown by
combining an 8-cluster model over visual CNN features
(CNN-8) and an orientation+occlusion model (B = 4,M =
2). Under these settings, a monolithic classifier produces
an 33.63 AP value, while the 16 cluster combined model
produces 50.92 AP on the ‘hard’ settings. Another interesting
fact is that unlike in car detection [18], the performance is
less sensitive to the clustering method used, and both CNN-
based and geometry-based features work well.
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Fig. 8: Detection results using the proposed approach on KITTI. Best viewed on screen.
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Fig. 7: A comparison of all the different clustering techniques
while testing on ‘hard’ settings. All are shown to improve
over the monolithic baseline, and visual clustering is shown
to produce complementary appearance patterns to the orien-
tation and occlusion clustering.

V. CONCLUSION

This paper studied the effectiveness of multi-component
AdaBoost models on the task of pedestrian detection. The
approach showed promise over the most challenging settings
of the KITTI dataset. The analysis demonstrates that the
detection task itself benefits from orientation models. In
the future, the impact of the the appearance patterns on
orientation estimation and tracking will be studied [28], [29].

Integrative approaches may also provide improved detection
performance [30]. We would also like to study the benefit
for effective pedestrian-based active safety systems [31].
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