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A Comparative Study of Color and Depth Features for
Hand Gesture Recognition in Naturalistic Driving Settings
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Abstract— We are concerned with investigating efficient video
representations for the purpose of hand gesture recognition
in settings of naturalistic driving. In order to provide a
common experimental setup for previously proposed space-time
features, we study a color and depth naturalistic hand gesture
benchmark. The dataset allows for evaluation of descriptors
under settings of common self-occlusion and large illumination
variation. A collection of simple and quick to extract spatio-
temporal cues requiring no codebook encoding are proposed.
Their effectiveness is validated on our dataset, as well as on
the Cambridge hand gesture dataset, improving state-of-the-art.
Finally, fusion of the modalities and various cues is studied.

I. INTRODUCTION

Automatic visual interpretation of dynamic hand gestures
has many potential applications in the field of human-
machine interaction [1]–[5]. Hand gesture recognition is a
subset of the general challenging action recognition problem,
which has motivated the development of many different tech-
niques for spatio-temporal feature extraction and analysis.
Methods may employ pose estimation and tracking [6], [7],
spatio-temporal templates of shape or flow using local or
global patterns [8], [9], and may incorporate interest-point
detection [10]–[12]. Bag-of-features techniques still stand at
the forefront of the performance. Recent availability of high
quality depth sensors lead to research in extending some of
the aforementioned descriptors to include depth cues [13],
[14]. New features specific for depth cues, such as local
occupancy patterns [15], histogram of normal vectors [16],
and histogram of 3D facets [17] have been proposed for the
task of spatio-temporal depth-based action representation.

In this paper, an emphasis is put on performing a com-
parative study of several different successful spatio-temporal
feature extraction methods that were previously proposed in
literature, but for the purpose of hand gesture recognition
from both color and depth video. The techniques and analysis
are tested under visually challenging settings.

A. Contributions

Evaluation: We perform an extensive analysis of common
spatio-temporal video representations. Some descriptors have
been commonly evaluated on full or upper body action recog-
nition, and need to be studied on fine detailed hand gestures.
Secondly, the descriptor will be a part of a classification
piepline that differs among different works. Therefore, there
is a need for comprehensive study of space-time features in
common experimental settings. This work aims to benchmark
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Fig. 1: Samples from the dataset studied in this paper.
The middle frame of each video is visualized. The dataset
allows for carrying out informative comparisons between
competing approaches under visual challenges of small inter-
class separation, large variation in performance of each ges-
ture among subjects, harsh illumination changes encountered
in naturalistic settings (saturation, high contrast shadows,
etc.), and common self-occlusion caused by performing the
gestures away from the sensor. The dataset contains both
color and depth video.

and motivate further research in the community by providing
a comprehensive study, comparison, and evaluation method-
ology. We also study depth usability from a Kinect under nat-
uralistic settings. A ‘no pose required’ approach is pursued
for the recognition of gestures using visual spatio-temporal
feature detectors and descriptors schemes [8], [9], [12], [18]–
[20]. Benchmarking the feature extraction methods on the
challenging dataset reveals insights into their advantages
and current limitations, thereby providing an opportunity
for pushing forward the performance of visual recognition
systems. Runtime analysis is provided as well.

Technique: We show that a combination of global low-
level spatio-temporal features that can be easily and effi-
ciently extracted stands at state-of-the-art on the Cambridge
hand gesture dataset [21] and the proposed dataset in this pa-
per. We suggest a novel feature set building on the previously
proposed motion history image (MHI) extension [8] and his-
togram of oriented gradients (HOG) features [22]. Analysis
of fusion techniques for the color and depth descriptors is
also provided. The final proposed feature set is fast to extract,
allowing for real-time hand gesture recognition.

II. COMPARISON OF SPACE-TIME FEATURES

We benchmark several recently proposed descriptors. Al-
though some were evaluated as color descriptors in previous
literature, we benchmark descriptors on both the color and
depth videos of our dataset. This, in turn, opens up the
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possibly of exploiting complementary information between
color and depth, especially under noisy settings where one
of the modalities may provide a more reliable signal.

This work also studies a combination of features that
is experimentally shown to be effective at hand gesture
recognition. First, the baseline benchmarks are discussed
below.

Cuboids (Dollár et al. [12]): As mentioned in [23], the
descriptor still stands as a good benchmarking tool for
space-time interest point detection. It employs a Gabor filter,
followed by extracting of a ‘cuboid’-a matrix of spatio-
temporally windowed pixel values. The local cuboids can be
processed in different methods (we use a flattened gradient)
and principal component analysis (PCA) is employed to
reduce dimensionality.

Harris3D [10] and Harris3.5D (Ha-3D and Ha-3.5D)
(Hadfield and Bowden [13]): After investigation on the
Hollywood3D dataset, the Harris3D (with HOG/HOF) was
shown to be successful on color images compared to the
Cuboids descriptor. An extension that incorporates comple-
mentary information from the appearance and depth cues
by relative weighting was shown to significantly improve
recognition rates (Harris 3.5D).

HOG3D (Kläser et al. [18]): A spatio-temporal extension
of HOG, based on histograms of 3D gradient orientations.
In [18] it was shown to outperform the HOG and histogram
of optical flow (HOF) descriptors.

Dense Trajectories and Motion Boundary Descriptors
(DTM) (Heng et al. [9]): Optical flow is used to extract
dense trajectories, around which shape, appearance (HOG),
and motion (HOF) descriptors are extracted. Finally, motion
boundary histograms (MBH) are extracted along the x and
y directions. This descriptor showed excellent results on a
variety of action recognition datasets.

Motion History Image (MHI) (Bobick and Davis [19]):
Involves computing a motion history image by successively
layering image regions over time using a thresholded update
rule. The pixel intensities ‘decay’ with time, so that initial
frames are darker, and recent frames are lighter in intensity.
Regions of motion are generated by differencing and thresh-
olding to get an image D. Choosing the threshold value will
have significant impact on performance as will be discussed
in Section IV-A. The MHI Hτ is generated using

Hτ =

{
τ if D(x, y, t) = 1

max(0, Hτ (x, y, t− 1)− 1) otherwise.
(1)

where the value of τ is the temporal length of the gesture
instance. This descriptor is used to represent motion in a
single static image, and can be applied to either RGB or
depth input. HOG is used to produce the final descriptor for
the MHI and all of the global descriptors.

HOG2 (Ohn-Bar and Trivedi [24]): The HOG2 (see Fig.
2) descriptor summarizes temporal characteristics in spatial
HOG features extracted in each frame. The histogram de-
scriptors are concatenated over the frames and used as an
input for a second HOG application. This recently proposed

Descriptor Extraction Time (in ms) Dimensionality
GEI 0.2 128
MHI 1.9 128
HOG2 [24] 2.8 128
EGEI (on Edge Image) 11.3 128
EMHI (on Edge Image) 13 128
DTM [9] 54 426*
Cuboids [12] 232.4 250*
HOG3D [18] 372 1000*
DSTIP [14] 774 879*
Ha-3D [10] 570 31*
HON4D [16] 40 22680
Ha-3.5D [13] 5690 234*

TABLE I: Comparison of average extraction time in millisec-
onds for each descriptor for one modality - RGB or depth.
Dimensionality is shown per frame (or per interest point)
for the local descriptors and per sample for the global ones.
Asterisk * indicates codebook construction is needed. DSTIP
is in MATLAB.

descriptor is shown in this work to complement the MHI
scheme. Both the HOG2 and the MHI descriptors are ex-
tracted from the entire image frame, and not using interest
points.

A. Depth-specific Descriptors

DSTIP (Xia and Aggarwal [14]): Spatio-temporal interest
points (STIP), although successful in color video, contain
noisy detections on depth video from the Kinect when
flickering of the depth values occurs. The work in [14]
suggests a noise suppression method, as well as a self-
similarity feature to be used to describe each cuboid.

HON4D (Oreifej and Liu [16]): Incorporates a 4D his-
togram over depth or color, time, and spatial coordinates of
the orientation of surface normals.

B. Extending MHI and HOG2

The global descriptors (MHI and HOG2) have a significant
advantage over the rest: they are small in dimensionality
and fast to compute (see Table I). Therefore, training and
testing repeatedly for optimizing parameters was extremely
simple, unlike many of the other descriptors (e.g. simply
loading the descriptors into memory in order to produce a
codebook for some of the schemes is slow). Furthermore, the
two descriptors combined where shown to perform well on
our dataset, and so we were motivated to build upon them.

Extended HOG2: We studied several extensions of the
HOG2 descriptor. We found that computing it at grids with
multiple scales by varying the cell size (see Fig. 2) impacts
accuracy favorably. Furthermore, it can be applied over
orthogonal planes in the X-Y-T volume (3 in total, X-Y, X-T,
Y-T, see Fig. 2). This type of temporal extension has been
proposed before [25], but not with this particular descriptor.

Extended MHI: The MHI as a descriptor has been widely
studied and has several advantageous properties as well as
limitations. Since the only moving body in the scene is the
hand, MHI is suitable for use on our dataset. However, the
value of the motion threshold needs to be determined as it
affects the level of noise in the MHI (see Section IV-A).
The classical MHI is also sensitive to illumination changes
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Multiple Spatial
Resolutions

Original
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(a) The extended HOG2 descriptor. The original HOG2

(shown in the blue box) can be extracted along three
planes of the spatio-temporal volume (bottom row), as
well as in multiple resolutions (top row-left).

(b) The extended motion history descriptor, incorpo-
rates a forward (top left) and backward (top middle)
motion history image, as well as the gait energy image
(top right). We also use edge images to compute the gait
energy (bottom left) and the MHI (bottom right).

Fig. 2: Our analysis suggests that the extended HOG2 and
the extended motion history image are an effective and
complementary set of spatio-temporal descriptors for state-
of-the-art dynamic hand gesture recognition. The descriptors
are applied both on color and depth video.

(it would be favorable to include dynamic background sub-
traction), occlusion and ”motion overwriting” [26], while a
model-based hand tracker might perform better under such
settings but at a computational expense.

Recently, some of these limitations were addressed by in-
troducing the inverse recording (MHIINV - MHI computed
in a reverse order in order to highlight motion information
from the beginning of the gesture) and the gait energy
information (GEI) which is the temporal average of the
image sequence. The work showed promising results on the
ChaLearn dataset [27]. In addition to the two features, we
found two extensions useful. First, a Sobel edge image is
extracted at every time step. This is used for: 1) GEI on Edge
Images (EGEI). 2) Edge Motion History Images (EMHI):

Accumulate edges for the MHI as opposed to silhouettes (see
Fig. 2). The pre-processing step of edge extraction increases
robustness against background noise.

III. EVALUATION FRAMEWORK

Table I compares the features in terms of processing time
for the feature extraction and the dimensionality (before
codebook construction for the local or dense schemes). Note
that the analysis is only done for RGB. Experiments were
done on a desktop CPU. Generally, we follow the authors
implementation and grid optimize the parameters in each
method.

Codebook construction: The aforementioned methods
either output a global video representation or a local sparse
or dense representation. The MHI-related cues are all sum-
marized using a HOG descriptor with 8 orientation bins
(we optimize for the cell size in Section IV-C). The rest
of the approaches can be encoded into a visual codebook.
Although there has been some recent progress in constructing
a discriminative codebook [28], k-means and Euclidean
distance is still widespread. We follow the procedure in [23]
where k-means is initialized 8 times and the result with the
lowest error is kept. The size of the visual word codebook
is determined as best on our dataset over k = 1000, 2000,
3000, 4000 (see Table I).

Classifier Choice: a support vector machine (SVM) is
used in the experiments [29]. In addition to a linear SVM,
we compare two other non-linear kernels. The χ2-kernel is
a common choice, defined as

Kχ2(Xi, Xj) = exp(− 1

2C

n∑
k=1

(xik − xjk)2

xik + xjk
) (2)

Where C is the mean value of the χ2 distances over all the
training samples [23]. The second kernel is also common in
histogram comparison, the Histogram Intersection Kernel,

KHIK(Xi, Xj) =

n∑
k=1

min(xik, xjk) (3)

Finally, using a weighted sum of the χ2 and HIK kernels
is also reported with a slight performance increase.

IV. EXPERIMENTAL EVALUATION AND DISCUSSION

Table II details the performance of each of the global
descriptors studied in this work labeled in Fig. 3(right),
as well as each of the benchmark descriptors. The top
performing descriptor is highlighted for each kernel and for
each modality. The reported accuracy is the average over
the 8 runs of leave-one-subject-out splitting. For RGB, both
the proposed feature set (Extended HOG2 + Extended MHI)
perform best together with the DTM descriptor. Interestingly,
we applied the DTM to the depth video in order to see how
it performs, and the results were inferior. HOG3D performed
better on the depth data as opposed to color. Harris3D with
HOG/HOF was shown to outperform the Cuboids detector,
as in [13]. The optimal codebook size varied, for instance
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RGB (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) DTM HOG3D Ha-3D DSTIP HON4D Cuboids
Linear 27.0 15.4 24.3 29.6 38.5 42.6 45.9 47.3 48.8 51.7 41.3 35.8 37.2 - - 22.1
χ2 29.7 18.0 26.8 29.6 37.0 44.2 47.7 47.4 49.3 49.5 47.0 39.1 41.8 - - 25.4

HIK 26.0 16.9 28.0 31.1 39.7 45.0 47.6 47.4 49.1 52.2 47.7 37.8 42.5 - - 23.2
HIK+χ2 26.5 16.9 27.9 31.4 39.9 45.1 47.5 47.4 49.1 52.2 50.1 40.4 42.0 - - 23.4
Depth
Linear 37.8 30.3 31.5 34.3 45.7 53.3 56.9 59.2 58.0 60.7 37.1 40.6 39.5 26.3 55.5 24.2
χ2 41.9 33.8 32.8 33.8 44.6 54.3 58.1 57.5 58.9 59.4 40.8 43.0 40.1 29.8 57.6 25.7

HIK 38.2 32.5 30.3 36.5 47.0 55.5 56.8 58.3 59.7 61.0 43.2 44.2 41.4 29.4 58.3 26.1
HIK+χ2 38.7 32.4 30.4 36.5 46.8 55.3 56.9 58.3 59.8 61.0 45.1 46.1 41.8 29.4 58.7 25.9

TABLE II: Performance of the different descriptors on the dataset using the two modalities, color and depth, separately.
Results are shown for each of the four SVM kernels described in Section III. Feature labels for the global features are shown
in Fig. 3(right). Bolded is the maximum for each kernel and for each modality.
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Feature Label Detail
(a) HOG2

(b) GEI
(c) MHI
(d) MHIINV
(e) (b) + (c) + (d)
(f) (a) + (e)
(g) (f) + HOG2 MultiScale
(h) (g) + EGEI
(i) (h) + EMHI
(j) (i) + Extended HOG2

Fig. 3: Results for different parameter settings for the proposed feature set of extended global descriptors. Left: HOG cell
size parameter. Middle: setting motion threshold to a fixed parameter (in blue) or an adaptive parameter from Eqn. 4 on
our dataset. Right: descriptor labels for Tables II and IV.

k=1000 was shown best for HOG3D, yet k=2000 was shown
best for DTM (increasing k further did not improve the
results), and k=4000 for DSTIP. Combinations with DTM
or HOG3D is left for future work.

Due to the their simplicity, the global descriptors allowed
for extensive testing with much more ease compared to
the local spatio-temporal features where just the extraction
of the features over the dataset can take many hours. In
order to optimize parameters, we perform the simplest fusion
(concatenation) and optimize the cell size parameter (for
the HOG on all the global features) and the MHI motion
threshold, as shown in Fig. 3. This pushes up accuracy to
64.2%. Additional fusion techniques are discussed in Section
IV-C.

A. MHI with an Adaptive Threshold

The MHI from RGB and depth requires settings a motion
threshold parameter for calculating Hτ . Three adaptive tech-
niques and one fixed technique were compared: In the fixed
settings, we visually inspected the motion history image, and
found settings Td = Tc/10 was a good practice, where Td is
the motion threshold for the depth image, and Tc for the
color image. Next we vary the lambda and evaluate the
performance with all of the global descriptors from Fig.
3-left. Fig. 3-middle shows in blue the results of varying
Tc using a concatenated RGBD descriptor, as well four
approaches for an adaptive threshold choice detailed below.

In [8], an adaptive threshold scheme is proposed, shown
in Eqn. 4 as T1, where w and h are the width and height
of the frame, N is the number of frames in the sequence,

T1 =

√
1

w×h×N

N∑
t=1

σ2(It) T2 =

√
1
N

N∑
t=1

σ2(It)

T3 = σ(It) T4 = σ(Dt)
(4)

and σ2(It) is the variance of the image (concatenated into
a vector). We found it significantly better (with up to a
4% accuracy increase on our dataset using a concatenated
RGBD descriptor and a HIK+χ2 kernel) to use T2. Using
T1 produced a noisy MHI due to over-sensitivity. We also
experimented with using T3 = σ(It) and T4 = σ(Dt), where
Dt is the difference image at time t, also showing better
results than T1. The results in Fig. 3 show that using a
fixed threshold can slightly outperform using the adaptive
thresholds considered. The results were more prominent on
the Cambridge dataset, where using T2 resulted in 93.5% as
opposed to using a fixed threshold of T = 0.04 for all of the
sequences performing at 97.9%.

B. Pre-Processing using Color Normalization

Due to the large illumination changes, we investigated sev-
eral normalization approaches; one was a simple histogram
equalization of the images, another was using automatic
color enhancement (ACE) [30]. Pre-processing did not seem
to significantly impact the performance of the proposed
feature set.

C. RGBD Fusion

Generally, depth-based descriptors outperformed RGB-
based ones on our dataset (Table II). We wish to study
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the extent to which they are complementary. In addition,
fusion techniques could leverage one modality over the other
in the presence of noise. As a baseline, we use the top
performing descriptor from [13], the Harris3.5D descriptor
using the HOG/HOF/HODG, which showed the best results
and significantly outperformed using Harris3D on RGB only.
Another possible approach is to concatenate the descriptors
in each frame and construct a codebook over both RGB and
depth visual words, shown in Table III. Such an approach
benefits the DTM descriptor, improving performance from
50.1% using RGB only to 54%. Surprisingly, this scheme
produces better results than the best scheme in [13], but
generally interest-point based methods did not perform well
on the dataset.

We experiment with several schemes for fusion with the
extended global descriptor set proposed in the paper.

Concatenation: RGB and depth features are appended for
low-level, early fusion.

PCA: PCA may be used over both the RGB and depth
descriptors. In Table III two possible uses of PCA are
studied. First, PCA is applied over color and depth versions
of each proposed global descriptor, referred to as PCA (each
cue). The reduced dimension is half of the original feature
vector length. Next, the different features are concatenated
and jointly reduced in dimensionality to half the size.

Late Fusion: One last common fusion scheme is studied.
The late fusion scheme involves learning a model for a subset
of the entire RGBD vector, and then integrating the ensemble
of models. This can be done by applying an operation
on the probability outputs of each model (approximated
using pairwise coupling [29]. Formally, let the feature vector
be x ∈ Rn and Ω = {ω1, . . . , ωc} be the set of class
labels. For an ensemble of classifiers {D1, . . . , Dn}, denote
di,j(x) ∈ [0, 1] as the support that classifier Di provides
for the hypothesis that x belongs to the ωj class. We use
di,j(x) in order to approximate the posterior probabilities
for each class, P (ωk|x), which is maximized to provide
the final classification label. Out of a range of operations,
P (ωj |x) =

∏n
i=1 di,j(x) was found to work well, and we

compare it against learning a weighted combination with a
2nd-stage SVM classifier. The experiments vary the ensemble
construction. In TwoModels, the split is by modality (n = 2),
such that d1,j = P (ωj |xcolor) and d2,j = P (ωj |xdepth).

We also studied adding together into the late fusion
different splits of the feature vector, referred to as context.
For the TwoModels case, it involves incorporating a third
model to the ensemble, d3,j = P (ωj |xcolor,xdepth).

Instead of per-modality split, we can learn a
model for each of the proposed global descriptors
(ModelForEachCue), and integrate context by fusing with
models learned from concatenation of different cues. The
reason why this may be useful is due to a hierarchical
control over the contribution of each cue to the final
posterior. This also applies to the context models, which
can be used to better capture how different types of features
correlate.

Table III shows the results of the experiments. Although

Baseline %
DTM [9] 54.0
HOG3D [18] 44.6
Ha-3.5D [13] 36.4

Proposed Feature Set
Concatenation 64.2
PCA (each cue) 62.5
PCA (all cues) 62.3
TwoModels (color and depth) 64.5
TwoModels (color and depth) - 2nd stage 64.6
TwoModels+Context 63.7
ModelForEachCue 65.6
ModelForEachCue+Context 68.1

TABLE III: Evaluation of different color-depth fusion tech-
niques on our dataset. See Section IV-C for detail.

Fig. 4: Results on our dataset after color and depth fusion
using ModelForEachCue+Context.

simply training an ensemble of two models lead to a small
improvement, training over individual cues and adding con-
text leads to a significant improvement, with an accuracy of
68.1%. Fig. 4 shows the resulting confusion matrix.

D. The Cambridge Hand Gesture

The generalization of the extended feature set proposed in
the paper is tested by using the Cambridge hand gesture
dataset. The dataset contains 9 dynamic gesture classes.
Training is performed on the subject with normal illumina-
tion and testing is done on the other four videos with varying
illumination. The extended descriptors proposed perform at
an accuracy of 97.9% (Table IV).

V. CONCLUDING REMARKS

In this work we performed a comparative analysis of
existing color and depth descriptors for hand gesture recog-
nition in the car. Methodologies were also studied with
different fusion schemes of the descriptors and modalities. In
the future, incorporation of spatio-temporal oriented energy
features could further improve recognition performance [39].
In the future, the applicability to general driver hand gestures
will be studied [40], [41].
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Previous Results % This Work %
Baraldi et al. (2014) [31] 94
Sanin et al. (2013) [32] 93 (j) 97.9
Kobayashi and Otsu (2012) [33] 92 (i) 95.8
Lui (2012) [34] 91.7 (h) 94.9
Lui et al. (2010) [35] 88 (g) 93.8
Harandi et al. (2012) [36] 86.3 (f) 92.9
Liu and Shao (2013) [37] 85 (e) 88.3
Kim et al. (2007) [21] 82 (d) 82.1
HMHI [37] 81 (c) 72.8
HOG/HOF [37] 79 (b) 52.7
HOG3D [37] 76 (a) 79.1
SIFT3D [37] 75
Niebles et al. (2008) [38] 67

TABLE IV: Performance using a HIK+χ2 kernel and the
descriptors in Fig. 3(right) against previous results on the
Cambridge dataset.
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