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Abstract—In this paper, we develop a vision-based system that
employs a combined RGB and depth descriptor to classify hand
gestures. The method is studied for a human–machine interface
application in the car. Two interconnected modules are employed:
one that detects a hand in the region of interaction and performs
user classification, and another that performs gesture recognition.
The feasibility of the system is demonstrated using a challenging
RGBD hand gesture data set collected under settings of common
illumination variation and occlusion.

Index Terms—Depth cue analysis, driver assistance sys-
tems, hand gesture recognition, human–machine interaction,
infotainment.

I. INTRODUCTION

R ECENT years have seen a tremendous growth in novel
devices and techniques for human–computer interaction

(HCI). These draw upon human-to-human communication
modalities to introduce certain intuitiveness and ease to the
HCI. In particular, interfaces incorporating hand gestures have
gained popularity in many fields of application. In this paper,
we are concerned with the automatic visual interpretation of
dynamic hand gestures and study these in a framework of an in-
vehicle interface. A real-time vision-based system is developed,
with the goal of robust recognition of hand gestures performed
by driver and passenger users. The techniques and analysis
presented are applicable to many other application fields requir-
ing hand gesture recognition in visually challenging real-world
settings.

Motivation for In-Vehicle Gestural Interfaces: In this paper,
we are mainly concerned with developing a vision-based hand
gesture recognition system that can generalize over different
users and operating modes and show robustness under challeng-
ing visual settings. In addition to the general study of robust
descriptors and fast classification schemes for hand gesture
recognition, we are motivated by recent research showing ad-
vantages of gestural interfaces over other forms of interaction
for certain HCI functionalities.

Among tactile, touch, and gestural in-vehicle interfaces, ges-
ture interaction was reported to pose certain advantages over
the other two, such as lower visual load, reduced driving errors,
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and a high level of user acceptability [1]–[3]. The reduction
in visual load and nonintrusive nature led many automotive
companies to research such HCI [4] to alleviate the growing
concern of distraction from interfaces with increasingly com-
plex functionality in today’s vehicles [5]–[7]. Following a trend
in other devices where multimodal interfaces opened ways to
new functionality, efficiency, and comfort for certain users (as
opposed to interaction approaches solely based on tangible con-
trollers), we propose an alternative or supplementary solution
to the in-vehicle interface. As each modality has its strengths
and limitations, we believe that a multimodal interface should
be pursued for leveraging advantages from each modality and
allowing customization to the user.

Advantages for Developing a Contactless Vision-Based
Interface Solution: The system proposed in this paper may
offer several advantages over a contact interface. First, camera
input could possibly serve multiple purposes, in addition to
the interface. For instance, it allows for analysis of additional
hand activities or salient objects inside the car (as in [8]–[12]),
important for advanced driver assistance systems. Furthermore,
it allows for the determination of the user of the system (driver
or passenger), which can be used for further customization.
Second, it offers flexibility to where the gestures can be per-
formed, such as close to the wheel region. A gestural interface
located above the wheel using a heads-up display was reported
to have high user acceptability in [2]. In addition to allowing for
interface location customization and a nonintrusive interface,
the system can lead to further novel applications, such as for
use from outside of the vehicle. Third, there may be some
potential advantages in terms of cost, as placing a camera in the
vehicle involves a relatively easy installation. Just as contact
gestural interfaces showed certain advantages compared with
conventional interfaces, contact-free interfaces and their effect
on driver visual and mental load should be similarly studied.
For instance, accurate coordination may be less needed when
using a contact-free interface as opposed to when using a touch
screen, thereby possibly reducing glances at the interface.

Challenges for a Vision-Based System: The method must
generalize over users and variation in the performance of the
gestures. Segmentation of continuous temporal gesture events
is also difficult. In particular, gesture recognition in the volatile
environment of the vehicle’s interior significantly differs from
gesture recognition in the constrained environment of an office.
First, the algorithm must be robust to varying global illumina-
tion changes and shadow artifacts. Second, since the camera is
mounted behind the front-row seat occupants in our study and
gestures are performed away from the sensor, the hand com-
monly self-occludes itself throughout the performance of the
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Fig. 1. Examples of the challenges for a vision-based in-vehicle gesture interface. Illumination artifacts (saturation, high contrast shadows, etc.) throughout the
performance of the gestures in the data set are shown. Gestures are performed away from the sensor, resulting in frequent self-occlusion. The type of gestures
varies from coarse hand motion to fine finger motion. (a) Large variation in illumination and performance of the gestures. (b) Example gestures in the data set.
Top to bottom: clockwise O swipe, rotate clockwise, scroll up, pinch\zoom-in.

gestures. Precise pose estimation (as in [13] and [14]) is difficult
and was little studied before in settings of harsh illumination
changes and large self-occlusion, yet many approaches rely on
such pose information for producing the discriminatory features
for gesture classification. Finally, fast computation (ideally real
time) is desirable.

To study these challenges, we collected an RGB-Depth
(RGBD) data set of 19 gestures, performed two to three times
by eight subjects (each subject preformed the set as both driver
and passenger) for a total of 886 instances. Examples of gesture
samples and the challenging settings are shown in Fig. 1.
The data set collected allows for studying user and orientation
invariance, the effects of occlusion, and illumination variability
due to the position of the interface in the top part of the center
console. Different common spatiotemporal feature extraction
methods were tested on the data set, showing its difficulty (see
Table IV).

In this paper, we pursue a no-pose approach for the recogni-
tion of gestures. A set of common spatiotemporal descriptors
[15]–[17] are evaluated in terms of speed and recognition
accuracy. Each of the descriptors is compared over the differ-
ent modalities (RGB and depth) with different classification
schemes (kernel choices for a support vector machine (SVM)
classifier [18]) for finding the optimal combination and gain-
ing insights into the strengths and limitations of the different
approaches. Finally, the gesture data set is used to study the
effects of different training techniques, such as user-specific
training and testing, on recognition performance. The results of
this study demonstrate the feasibility of an in-vehicle gestural
interface using a real-time system based on RGBD cues. The
gesture recognition system studied is shown to be suitable for a
wide range of functionalities in the car.

II. RELATED RESEARCH STUDIES

As the quality of RGB and depth output from cameras
improve and hardware prices decline, a wide array of applica-
tions spurred an interest in gesture recognition in the research

community. Relevant literature related to gesture recognition
and user interfaces is summarized below.

Video Descriptors for Spatiotemporal Gesture Analysis: Re-
cent techniques for extracting spatiotemporal features from
video and depth input for the purpose of gesture and activity
recognition are surveyed in [19] and [20]. Generally, hand
gesture recognition methods may extract shape and motion
features that represent temporal changes corresponding to the
gesture performance, as in [17] and [21]. These can be locally
extracted using spatiotemporal interest points (as in [22] and
[23]) or densely sampled. Such features may be hand crafted,
as done in this paper, or learned using a convolutional network
[24]. Information of pose, although difficult to obtain in our ap-
plication, is also highly useful for recognition, as demonstrated
in [25]–[30].

Hand Gesture Recognition With RGBD Cues: The introduc-
tion of high-quality depth sensors at a lower cost, such as the
Microsoft Kinect, facilitated the development of many gesture
recognition systems. In particular, hand gesture recognition
systems were developed with applications in the fields of sign
language recognition [31]–[34], driver assistance [35], [36],
smart environments [21], [37], [38], video games [39], medical
instrumentation [40], [41], and other human–computer inter-
faces [42]–[44]. Hand gesture recognition systems commonly
use depth information for background removal purposes [45]–
[48]. Ren et al. [45] proposed using a Finger-Earth Mover’s
Distance for recognizing static poses. Hand detection is com-
monly performed using skin analysis [33], [47]. In [33], depth
information is used to segment the hand and estimate its ori-
entation using principal component analysis (PCA) with a re-
finement step. The classification of static gestures is performed
using an average neighborhood margin maximization classifier
combined with depth and hand rotation cues. In [34], a nearest-
neighbor classifier with a dynamic time warping (DTW) mea-
sure was used to classify dynamic hand gestures of digits
from zero to nine. A hidden Markov model (HMM) may also
be used [49] for gesture modeling. Minnen and Zafrulla [50]
used features of global image statistics or grid coverage and



2370 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 15, NO. 6, DECEMBER 2014

Fig. 2. Outline of the main components of the system studied in this paper for in-vehicle gesture recognition. First, the hand detection module provides
segmentation of gestures and determines the user, which is either the passenger or the driver. This is followed by spatiotemporal feature analysis for performing
gesture classification.

a randomized decision forest for depth-based static hand pose
recognition. There has been some work in adapting color de-
scriptors to be more effective when applied to depth data. As
noted in [51], common RGB-based techniques (e.g., spatiotem-
poral interest points as in the work of Dollár et al. [52]) may
not work well on the output of some depth sensors and need to
be adjusted as in [53].

In this paper, we focus on approaches that do not involve
tracking of hand pose. Each descriptor is applied to the RGB
and depth modality separately, and finally, these are early-fused
together by concatenation. Common spatiotemporal feature ex-
traction methods, such as a histogram of 3D oriented gradients
(HOG3D) [16], motion boundary descriptors and dense trajec-
tories [17], and other forms of gradient-based spatiotemporal
feature extraction techniques [15], will be evaluated on the
challenging data set. For classification, an SVM classifier is
employed [18].

Hand Gesture Interfaces in the Car: Finally, we briefly
review works with affinity to the vehicle domain. A similar
effort to ours was reported in the work of Zobl et al. [54],
where a CCD camera and NIR LED illumination in a simulator
were used to perform gesture recognition out of an elaborate
gesture inventory of 15 gestures. The gestures used were both
static and dynamic. Static gestures may be used to activate the
dynamic gesture recognizer. An HMM is employed to perform
the dynamic gesture recognition. The inventory is not explicitly
mentioned, as well as the speed of the algorithm, and only
one subject was used. There also has been some work toward
standardization of the in-vehicle gestural interaction space [55].
Althoff et al. [56] studied 17 hand gestures and six head
gestures using an infrared camera and an HMM and rule-based
classifier. Endres et al. [57] used a Theremin device, which is
a contactless device consisting of two metal antennas. Moving
the hand alters the capacity of an oscillating current, generating
a signal that is fed to a DTW classifier.

III. HAND GESTURE RECOGNITION IN THE CAR

A. Experimental Setup and Data Set

The proposed system (see Fig. 2) uses RGB and depth im-
ages in a region of interest (ROI). In our experiments, this ROI

was chosen to be the instrument panel (shown in Figs. 1 and
3). To demonstrate the feasibility of the system, we collected a
data set containing 19 hand gestures. The data set is publicly
available at http://cvrr.ucsd.edu/LISA/hand.html. Each gesture
was performed about three times by eight subjects (Table I).
Each subject performed the set two times, i.e., once as the
driver and once as the passenger. The gestures are all dynamic,
as these are common in human-to-human communication and
existing gestural interfaces. The size of the RGB and depth
maps are both 640 × 480, and the ROI is 115 × 250. Altogether,
the data set contains 886 gesture samples. The main focus
of this work is the recognition of gestures under illumination
artifacts, and not the effects of the interface on driving. There-
fore, subjects were requested to drive slowly in a parking lot
while performing the gestures, as the gestures were verbally in-
structed. Subjects 1 and 4 performed the gestures in a stationary
vehicle. It was observed that following the initial learning of the
gesture set, both passenger and driver carried the gestures more
naturally. At times, this resulted in the hand partially leaving
the predefined infotainment ROI, as strokes became large and
more flowing. These large and inaccurate movements provided
natural variations, which were incorporated into the training
and testing set.

Fig. 4 shows the illumination variation among videos and
subjects. A temporal sum was performed over the number of
pixel intensities above a threshold in each gesture video to
produce an average intensity score for the video, i.e.,

Intensity Score=
1

m×n×T

∑
t=1:T

|{(x, y) : It(x, y)>0.95}| .

(1)

That is, the average number of high-intensity pixels over the
m× n images It in a video of length T . A large variation in the
data set is observed in Fig. 4, both within the same subject and
among subjects.

Interface Location: Among previously proposed gestural
interfaces, the location of the interface significantly varies. In
our study, the gestures were performed by the center console,
as shown in Fig. 3. We chose a position that would be difficult
for a vision-based system due to illumination artifacts and
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Fig. 3. Camera setup (color, depth, and point cloud) for the in-vehicle vision-based gesture recognition system studied in this work.

Fig. 4. Illumination variation among different videos and subjects as the
average percent of high pixel intensities [see (1)]. Each point corresponds to
one gesture sample video. The triangles plot the overall mean for each subject.
Videos with little to no illumination variation were taken using subjects 1 and 4.

self-occlusion. In future design, the location of the interface
should depend on whether the system aims to replace or sup-
plement existing secondary controls and the type of feedback
that will be used.

Gesture Inventory: The inventory is as follows. Two-finger
swipe gestures: swipe left, swipe right, swipe down, swipe up,
swipe V, swipe X, swipe+(plus). The motion in these is mostly
performed with the fingers and not with the hand, as opposed
to the scroll where the fingers move with the entire hand in the
direction of the scrolling: scroll left, scroll right, scroll down,
and scroll up. One-tap gestures can be done with one or three
fingers, one tap-1 and one tap-3. Next, we have the open and
close, a fist following a spread open palm, or vice versa. Finally,
we use a two-finger pinch as shown in Fig. 1-bottom, and the
expand (opposite motion), as well as rotate counterclockwise
and rotate clockwise (see Fig. 1-second row). We note that
there were small variations in the performance of some of the
gestures; for instance, the swipe X and swipe+ can be performed
in multiple ways, depending on the starting position of the hand.

Gesture Functionality: The 19 gestures are grouped into
three subsets with increasing complexity for different in-vehicle
applications as shown in Table II. A set of functionalities is
proposed for each gesture.

For GS1 (phone), the open and close gestures are used to
answer or end a call. Scrolls provide volume control, and
the swipe+ provides the “info/settings/bring up menu” button.
GS2 involves additional gestures for music control. Swipes
provide the “next” and “previous” controls. A tap with one

TABLE I
ATTRIBUTE SUMMARY OF THE EIGHT RECORDING SEQUENCES OF VIDEO

DATA USED FOR TRAINING AND TESTING. WEATHER CONDITIONS

ARE INDICATED AS OVERCAST (O) AND SUNNY (S). TIME OF

CAPTURE WAS DONE IN AFTERNOON AND MID-AFTERNOON.
SKIN COLOR VARIES FROM LIGHT (C1) TO INTERMEDIATE (C2)

AND DARK BROWN/BLACK (C3)

finger pauses, and with three fingers allows for a voice search
of a song. Finally, the X and V swipes provide feedback and
ranking of a song, so that the user can “like” or “dislike” songs.
This gesture set contains gestures that can be used for general
navigation through other menus if needed. Finally, the more
complex GS3 contains refined gestures purposed for picture
or navigation control. A one-finger tap is used for “select,”
the scrolls for moving throughout a map, two-finger rotation
gestures rotate the view, and expand and pinch allows for
zoom control. Swipe up and swipe down are used for transition
between bird’s eye view and street view.

B. Hand Detection and User Determination

Both recognition and temporal segmentation must be ad-
dressed. Since recognition was found to be a challenging task
on its own, it is the main focus of this paper. In particu-
lar, spatiotemporal features are evaluated in terms of speed,
performance, and varying generalization. Although temporal
segmentation is a difficult problem as well, in this work, we
employ a simple segmentation of temporal gestures using a
hand presence detector, so that the hand must leave the ROI
between different gestures.

The first module in the system performs hand detection
in a chosen ROI. The classification may be binary, detecting
whether a hand or not is present in the ROI, or multiclass
for user determination, as in [58]. In the latter case, a three-
class classification performs recognition of the user: 1) no one;
2) driver; or 3) passenger. This is done with a simplified version
of the histogram of oriented gradient (HOG) algorithm [59],
which will be described below, and an SVM classifier. For
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TABLE II
THREE SUBSETS OF GESTURES CHOSEN FOR EVALUATION

OF APPLICATION-SPECIFIC GESTURE SETS

clarity and reproducibility, we detail the implementation of the
visual features extraction used in this work.

HOG Spatial Feature Extraction: Let I(x, y) be an m× n
signal. The discrete derivatives Gx and Gy are approximated
using a 1D centered first difference [−1,0,1] to obtain the
magnitude, G, and quantized orientation angles into B bins, Θ.
The image is split into M ×N blocks. We found that overlap-
ping the blocks produces improved results, and throughout the
experiments, a 50% overlap between the cells is used. Let Gs,
Θs denote a cell for s ∈ {1, . . . ,M ·N}, so that the qth bin for
q ∈ {1, . . . , B} in the histogram descriptor for the cell is

hs(q) =
∑
x,y

Gs
x,y · 1 [Θs(x, y) = θ] (2)

where θ ∈ {−π + (2π/B) : (2π/B) : π}, and 1 is the indi-
cator function. The local histogram is normalized using an
L2-normalization: hs → hs/

√
‖(hs)‖2 + ε. Finally, the de-

scriptor at frame t is the concatenation of the histograms from
the cells

ht = [h1, . . . , hM ·N ]. (3)

For additional details and analysis on this part of the algo-
rithm, we refer the reader to [58].

Region Integration for Improved Hand Detection: The spe-
cific setup of location and size of the ROI can have a significant
impact on the illumination variation and background noise
in the ROI. Because the location of the ROI in our setup
produces common illumination artifacts, we found that using
visual information from other ROIs in the scene improves
hand detection performance under ambiguous and challenging
settings [60]. For instance, features extracted from the wheel,
gear shift, and side hand-rest regions were shown to increase
detection accuracy for the driver’s hand in the ROI (see Fig. 5).

C. Spatiotemporal Descriptors From RGB and Depth Video

The first module described in the previous section produces
a video sequence, which then requires spatiotemporal feature
extraction for the classification of the gesture instance. We
consider four approaches; each is applied to the RGB and
depth video independently. These are compared in Table III in
terms of extraction time and dimensionality. In the calculation
of extraction time, we time feature extraction for each video,
divide by the number of frames, and average over the videos in

Fig. 5. Driver hand presence detection in the instrument panel region. As the
instrument panel region is large with common illumination artifacts, cues from
other regions in the scene (such as the wheel region) can increase the robustness
of the hand detection in the instrument panel region.

Fig. 6. Varying the cell size parameters in the HOG-based gesture recognition
algorithm with a linear SVM for RGB, depth, and RGB+Depth descriptors. A
fixed eight-bin orientation histogram is used. Results are shown on the entire
19-gesture data set using leave-one-subject-out cross validation (cross-subject
test settings).

the data set. Given a set of video frames, we choose a descriptor
function, i.e., φ : Rm × R

n × R
T → R

d, for producing the
d-dimensional feature vector for gesture classification.
HOG: A straightforward temporal descriptor is produced

by choosing a vectorization operator on the spatial descriptors
in each frame, i.e., ht, t ∈ {1, . . . , T}. In this case, the video is
first resized to T = 20 frames by linear interpolation so that the
descriptor is fixed in size, i.e.,

φ(I1, . . . , IT ) = [h1, . . . , hT ]. (4)

The pipeline for this algorithm contains three parameters,
namely, M , N , and B. We use B = 8 orientation bins in all
of the experiments and fix M = N , so that only one parameter
can be varied, as shown in Fig. 6.
HOG2: Another choice of φ is motivated by the work in

[15] and [61]. In this case, the spatial descriptors are collected
over time to form a 2-D array (visualized in Fig. 2) of size
T × (M ·N ·B). Changes in the feature vector correspond to
changes in the shape and location of the hand. Consequently,
the spatial HOG algorithm described in Section III-B is ap-
plied again using an M1 ×N1 grid of cells and B1 angle
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quantization bins to extract a compact temporal descriptor of
size M1 ·N1 ·B1. The approach is termed HOG2, since it
involves applying the same algorithm twice (once in the spatial
domain and then again on those histograms over time). In this
case, φ : Rm × R

n × R
T → R

M1·N1·B1

φ(I1, . . . , IT ) = HOG

⎛
⎝
⎡
⎣ h1

...
hT

⎤
⎦
⎞
⎠ . (5)

As in [15], we also use the mean of each of the spatial HOG
features over time in the feature set. Generally, the dimension-
ality of HOG2 is much lower than the corresponding temporal
HOG concatenation. There are three additional parameters for
the second operation of HOG, but we fix those to be the same
as in the spatial HOG feature extraction so that M1 = M ,
N1 = N , and B1 = B.

HOG-PCA: Alternatively, we can reduce the dimensionality
of the concatenated histograms descriptor (HOG) using PCA.
In this case, we precompute the eigenspace using the training
samples and, at test time, project the temporal HOG concate-
nation feature using the eigenspace to derive a compact feature
vector. Studying this operation is useful mainly for comparison
with HOG2.

HOG3D (Kläser et al. [16]): A spatiotemporal extension of
HOG, where 3-D gradient orientations are binned using convex
regular polyhedrons to produce the final histogram descriptor.
The operation is performed on a dense grid, and a codebook
is produced using k-means. In our experiments, we optimize
k over k ∈ {500, 1000, 2000, 3000, 4000}. k-means is run five
times, and the best results are reported.

DTM (Heng et al. [17]): The dense trajectories and motion
boundary descriptor uses optical flow to extract dense trajec-
tories, around which shape (HOG) and motion (histograms
of optical flow) descriptors are extracted. Trajectory shape
descriptors encode local motion patterns, and motion boundary
histograms are extracted along the x- and y-directions. Sim-
ilar to HOG3D, we follow the authors’ original implemen-
tation with a dense sampling grid and a codebook produced
by k-means.

We emphasize that in our implementation, only HOG3D and
DTM require codebook construction with k-means. In these, a
video sequence is represented as a bag of local spatiotemporal
features. k-means is used to produce the codebook by which to
quantize features, and each video is represented as a frequency
histogram of the visual words (assignment to visual words is
performed using the Euclidean distance). The other techniques
involve a global descriptor computed over the entire image
patch. Furthermore, we experimented with a range of descrip-
tors, such as the Cuboids [52] and HON4D [51]; however, even
after parameter optimization, these did not show improvement
over the aforementioned baselines.

D. Classifier Choice

SVM [18] is used in the experiments due to its popularity in
the action recognition literature with varying types of descrip-
tors [16], [17]. In SVM classification, a Mercer similarity or
Kernel function needs to be defined. We study the following

TABLE III
COMPARISON OF AVERAGE EXTRACTION TIME PER FRAME IN

MILLISECONDS FOR EACH DESCRIPTOR AND FOR ONE

MODALITY—RGB OR DEPTH. NOTE THAT EXTRACTING RGBD CUES

FROM BOTH MODALITIES WILL REQUIRE ABOUT TWICE THE TIME.
EXPERIMENTS WERE DONE IN C++ ON A LINUX 64-BIT SYSTEM

WITH 8-GB RAM AND INTEL CORE i7 950 AT 3.07 GHz × 8.
ASTERISK (∗)—REQUIRES CODEBOOK CONSTRUCTION

three kernel choices. Given two data points, xi,xj ∈ R
d, the

linear kernel is given as

KLIN(xi,xj) = xT
i xj . (6)

The RBF-χ2 kernel is given as

Kχ2(xi,xj) = exp

(
− 1

2C

∑
k=1:d

(xik − xjk)
2

xik + xjk

)
(7)

where C is the mean value of the χ2 distances over the
training samples, and the histogram intersection kernel (HIK) is
given as

KHI(xi,xj) =
∑
k=1:d

min(xik, xjk). (8)

IV. EXPERIMENTAL EVALUATION AND DISCUSSION

Spatiotemporal Descriptor Analysis: The descriptors men-
tioned in Section III were compared with the three kernels
in Table IV. The results are shown for the entire 19-gesture
data set with leave-one-subject-out cross validation (cross-
subject test settings). As shown in Fig. 6, a 4 × 4 cell size
in computing the HOG-based descriptors was shown to work
well. The temporal HOG descriptor shows best results across
modalities and kernels. Although lower performing descriptors
benefit significantly from the nonlinear kernels, the benefits
for HOG are small. Overall, the DTM and HOG3D baselines
are outperformed by the rest, possibly since these are densely
sampled over the ROI, yet background information does not
contain useful information for the recognition (unlike other
action recognition scenarios).

Inspecting the different HOG descriptors studied in this
work, we observe that although the HOG2 shows comparable
results to DTM and HOG3D, it is outperformed by the HOG
scheme. Interestingly, it appears to contain complementary
information to the HOG scheme when combined, more so
than when using the HOG-PCA scheme (although the two
descriptors have the same dimensionality). This is the main
reason for which HOG-PCA was studied in this work, and not
for improving the results over HOG. Because HIK SVM with
the HOG + HOG2 descriptor showed good results, it is used in
the remaining experiments.

Evaluation on Gesture Subsets: As mentioned in
Section III-A, a 19-gesture data set may not be suitable
for the application of an automotive interface. A set of three
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TABLE IV
COMPARISON OF GESTURE CLASSIFICATION RESULTS USING THE

DIFFERENT SPATIOTEMPORAL FEATURE EXTRACTION METHODS ON

THE ENTIRE 19-GESTURE DATA SET IN A LEAVE-ONE-SUBJECT-OUT

CROSS VALIDATION (CROSS-SUBJECT TEST SETTINGS). AVERAGE

AND STANDARD DEVIATION OVER THE EIGHT FOLDS ARE SHOWN.
IN BOLD ARE THE BEST RESULTS FOR EACH MODALITY AND FOR EACH

KERNEL FOR THE SVM CLASSIFIER; LINEAR, RBF-χ2, AND HIK.
THE BEST RESULT OVERALL IS PREFIXED BY AN ASTERISK

subsets was chosen, and experiments were done using three
testing methods, with results shown in Table V. The three test
settings are as follows: 1/3-Subject: a threefold cross validation
where each time, a third of the samples from each subject
are reserved for training and the rest for testing; 2/3-Subject:
similar to 1/3-Subject, but two thirds of the samples are
reserved for training from each subject and the remaining
third for testing; Cross-subject: leave-one-subject-out cross
validation. Results are done over eight subjects and averaged.

The purpose of such a study is mostly in evaluating the
generalization of the proposed algorithm, as well as the effect
of user-specific training. The confusion matrix for each gesture
subset using 2/3-Subject test settings is shown in Fig. 8. Table V
reveals lower accuracy on the challenging cross-subject testing,
as expected. The reason is that within the eight subjects, there
were large variations in the execution of each gesture.

Basic Interface With a Mode Switch: Equipped with insight
on the least ambiguous gestures, we study a final gesture subset
(see Fig. 7) that provides a basic gesture interaction at high
recognition accuracy (shown in Table VI). We propose to use one
of the gestures, such as a one tap with three fingers (OneTap3)
to navigate among functionality modes while keeping the same
gesture set.

V. CONCLUDING REMARKS

In this paper, we have studied the feasibility of an in-vehicle
vision-based gesture recognition system. Although our work is
concerned with gesture recognition in naturalistic settings and

TABLE V
RECOGNITION ACCURACY AND STANDARD DEVIATION OVER CROSS

VALIDATION USING DIFFERENT EVALUATION METHODS DISCUSSED IN

SECTION IV. INCREASING THE NUMBER OF USER-SPECIFIC SAMPLES

RESULTS IN IMPROVED RECOGNITION. RGB+DEPTH IS THE TWO

DESCRIPTORS CONCATENATED AND AN HIK SVM. THE OVERALL

CATEGORY IS THE MEAN OVER THE COLUMN FOR EACH MODALITY,
FOR SHOWING THE BEST MODALITY SETTINGS

AND THE EFFECTS OF THE TEST SETTINGS

Fig. 7. Equipped with the analysis of the previously proposed gesture subsets,
a final gesture set composed of less ambiguous gestures is defined and studied.
The subset is designed for basic interaction, with one of the gestures used to
switch between different functionality modes.

TABLE VI
RECOGNITION ACCURACY USING RGB+DEPTH

AND AN HIK SVM ON GESTURE SET 4

not the psychological aspects of the interface, our experimental
design attempted to accompany other successful existing ges-
tural interaction interfaces. Following a trend in other devices
where multimodal interfaces opened ways to new functionality
and efficiency, with additional comfort for some users, we
sought a similar solution to the in-vehicle interface. As each in-
teraction modality has its strengths and limitations, we believe
that a multimodal interface should be pursued for leveraging
advantages from each modality and allowing customization to
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Fig. 8. Results for the three gesture subsets for different in-vehicle applications using 2/3-Subject test settings, where 2/3 of the samples are used for training
and the rest for testing in a 3-fold cross validation. An RGB+Depth combined descriptor was used. Average correct classification rates are shown in Table V.
(a) Phone (GS1). (b) Music\Menu Control (GS2). (c) Picture\Navigation (GS3).

the user. Each should be designed and studied carefully to avoid
a high mental workload in remembering or performing gestures,
provide appropriate feedback, and maximize intuitiveness.

In an attempt to propose a complete system, first, a hand
detection and user determination step was used, followed by
a real-time spatiotemporal descriptor and gesture classifica-
tion scheme. Out of a set of 19 gestures, four subsets were
constructed for different interactivity applications. A careful
evaluation of different temporal descriptors showed the chal-
lenging nature of the data set, with RGBD fusion proving to be
beneficial for recognition.

Future extensions should further analyze the role of each
of the spatiotemporal descriptors in increasing illumination-,
occlusion-, and subject-invariance of the system. Temporal
segmentation of gestures without requiring the hand to leave
the ROI may result in a more comfortable interface to use.
The studied RGBD feature set might be useful for studying
naturalistic hand gestures [8], [9]. The location of the ROI
can be studied to determine optimal natural interactivity, and
the gesture subset can be further refined and evaluated. Since
incorporating samples of a subject in training resulted in a

significantly higher recognition performance for that subject
in testing, online learning could further improve classification
rates. Finally, we hope that the evaluation in this work and
the public data set will inspire the development of new and
improved hand gesture recognition techniques.
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