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Abstract—This paper undergoes a finer-grained analysis of
current state-of-the-art in pedestrian detection, with the aims of
discovering insights into why and when detection fails. Current
pedestrian detection research studies are often measured and
compared by a single summarizing metric across datasets. The
progress in the field is measured by comparing the metric over the
years for a given dataset. Nonetheless, this type of analysis may
hinder development by ignoring the strengths and limitations of
each method as well as the role of dataset-specific characteristics.
For the experiments we employ two pedestrian detection datasets,
Caltech and KITTI, and highlight their differences. The datasets
are used in order to understand in what ways methods fail,
and the impact of attributes, occlusion, and other challenges.
Finally, the analysis is used to identify promising next steps for
researchers.

Index Terms—Pedestrian detection, fine-grained evaluation,
Caltech pedestrians, KITTI pedestrians.

I. INTRODUCTION

For researchers to build better pedestrian detectors, it is
crucial to fully understand the strengths and limitations of
current state-of-the-art methods. The goal of this paper is
to perform an attribute-based study of failures of pedestrian
detectors, attempting to better answer some of the questions
shown in Fig. 1. In the process, tools for finer-grained analysis
of pedestrian detectors are proposed. This also results in
dataset-specific insights as to promising next research steps. As
shown in Fig. 1, training a pedestrian detector is often done in
a non-specific manner, oblivious to the underlying challenges
that are specific to the datasets. Furthermore, detection is often
measured in coarse performance metrics, such as a final ROC
curve or area under the curve over the entire dataset. Such
generic training and evaluation practices elude the strengths
and limitations of each approach, thereby hindering progress
in the field.

The contributions of this paper are as following. First,
the extent to which dataset-specific attribute distribution can
impact detection performance are studied. Two popular pedes-
trian datasets, Caltech [1] and KITTI [2], are used in the
experiments. Dataset bias is highlighted for facilitating fu-
ture progress. Second, Attribute sensitivity by detectors is
shown to vary with the detection threshold dependent. This
conclusion is important when comparing multiple methods,
as the performance for certain attribute classes may degrade
more gracefully as the detection threshold is varied for some
methods. This improves our understanding of the method and

1AP is defined as the area under Precision-Recall curve times 100. This
metric is chosen to facilitate comparison between the metrics in this paper
and KITTI benchmark results.

 

•  Why? ‐ causes for most common failures of both methods on each dataset? 

•  Why?  ‐ to what extent did dataset characteris4cs play a role in performance 

difference across datasets? 

•  When? ‐ quan4ta4ve analysis of strengths and limita4ons of each method? 

•  What? ‐ are the next steps with most impact on performance?  
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Fig. 1: Our goal is to gain insight into the strength and limita-
tions of pedestrian detectors. Consider two methods and two
datasets. Method A may be better at detecting certain pedes-
trians (e.g. occluded) and method B at other types (e.g. small
pedestrians). Furthermore, the distribution of such instances is
different in the two datasets. This scenario is common, but
not easily identified in existing evaluation methodology which
employs a single summarizing metric. This may hinder: 1)
gaining full insights into the underlying causes of detection
failures and successes, and 2) database-driven conclusions as
to the most important next development steps.

its discriminative power at different points on the ROC or
precision-recall curve, and provides insights not commonly
found in existing literature. Furthermore, this study is appli-
cable to certain applications which require fixing the final
detection threshold.

The emphasis of these three contributions is to perform an
attribute-based study of the underlying reasons for detection
performance improvement. Additionally, it provides clearer
tools for identifying dataset bias. This emphasis is in contrast
to common related studies [3]–[11] involving improved feature
space design or learning procedures. Although the improve-
ment due to novel features and their fusion is remarkable,
it often falls under ‘trying and seeing what works’, leaving
most of the questions in Fig. 1 unresolved. For instance,
perhaps a paper introduces a novel shape, motion feature,
or fusion with promising results. Readers are left to wonder
about the underlying cause of the improvement-are partially-
occluded pedestrians better detected? Or perhaps fully visible
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(a) Caltech (b) KITTI

Fig. 2: Sample images with annotations from the two studied datasets.
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Fig. 3: Comparison of pedestrian height and aspect ratio across
datasets. Compared to KITTI, Caltech has a larger fraction
of pedestrians smaller than 50 pixels in height. Caltech has
a wider range of aspect ratios as well. This is an important
observation as most of the state-of-the art methods use only
single model with fixed height and aspect ratio. Furthermore,
the official evaluation metrics for the two datasets handle
aspect ratio variation differently.

pedestrians are better handled by removal of false positives
or deformation handling? Most importantly, the reader is left
uncertain as to what should be the next steps. Were there
any steps that could have been done better in the careful
dataset-specific features and learning tuning? Is the specific
attribute-class address now resolved, and researchers should
divert attention to other types of visually challenging instances
of pedestrians? Did the approach make assumptions at a certain
trade-off cost for certain attribute-classes of pedestrians? An

example for such an assumption would be the exclusion of oc-
cluded pedestrians in the training process, which may improve
performance for non-occluded cases but reduce performance
on occluded pedestrians. Dataset bias towards either one of
these classes could potentially hinder informative insights
towards resolving such issues. The above is also true, but
to a lesser extent, in methods improving modeling capacity
[12]–[16] as these may explicitly address a specific class of
pedestrians. Nonetheless the study of common failure modes
is useful in designing such methods. The failure analysis may
also be useful for choosing methods for specific applications
[17], [18].

Therefore, the goal in this paper is not to have best detector
but make sense out of a state-of-the-art object detector. For
the experiments, the Aggregate Channel Features (ACF) [19]
detector is used, due to its simplicity, speed, and effectiveness
on the Caltech pedestrian dataset.

II. DATASETS

A. Caltech Pedestrians

The common evaluation split is performed, where the first
six out of the 10 available sets of data are split into training
and the remaining for testing. Each video clip has a resolution
of 640x480 and is recorded at 30 frames per second. By
periodically sampling at 1 second, we extract about 60 frames
per video clip. This translates to 4250 and 4024 images in
the training and testing set, respectively. Sample images with
annotation are shown in Fig. 2. The distribution of pedestrian
height and aspect ratio2 are shown in Fig. 3, and compared
against pedestrians from the KITTI dataset.

B. KITTI Pedestrians

The KITTI object dataset [2] was introduced more recently,
with higher resolution images (1242 × 375 and careful cali-
bration with other sensor modalities as well. Like Caltech, it
is meant for automotive environments, and it exhibits specific
visual challenges for object detectors. Along with Pedestrian, it
also has annotations for other objects, such as cars and cyclists.

2Aspect Ratio is defined as the ratio of bounding box height to bounding
box width.
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The detection benchmark provides 7481 training images and
7518 test images (without available annotations). To evaluate
our performance we created a validation set as follows. The
split has to resemble Caltech datasets as closely as possible.
The first step is to apply the inverse mapping to remove
the random permutation of images and then separate them
into corresponding video clips. This can be automatically
achieved, thanks to the mapping sequence and video sequence
information provided in KITTI’s development kit. It turns
out that the training images were extracted from 144 video
sequences, each with an average of 52 frames. Next step is
to divide these video sequences into train and validation sets
such that they have almost same number of images and also
pedestrians. This is achieved by sorting the video according to
number of pedestrians and manually assigning each video to
either test or validation set. The final training and validation
split contains 3742 and 3739 images, respectively. Sample
images with annotation are shown in Fig. 2. Fig 3 compares the
distribution of pedestrian height and aspect ratio with Caltech.

The dataset performs separate evaluation on three cate-
gories, ‘easy’, ‘moderate’, and ‘hard’, referring to increasingly
challenging settings. The ‘easy’ category contains fully visible
pedestrians higher than 40 pixels in height and truncation
percentage below 15%, ‘moderate’ settings allow for partial
occlusion, minimum height of 25 pixels, and truncation up to
30%, and ‘hard’ include heavy occlusion and truncation up to
50%.

III. EXPERIMENTAL SETUP

Ideally we are tempted to look at the hardest settings
because this is where the detectors fail. But according to [2]
under hard settings as described by KITTI, around 2% of
the pedestrians were not recognized by humans. Furthermore,
methods are ranked according to moderate difficulty, and so
moderate settings were chosen for the analysis.

First, for performing the experimental analysis, we seek to
standardize evaluation among KITTI and Caltech. For instance,
Caltech does not annotate truncation, hence the moderate
settings constraints cannot be enforced directly on Caltech.
Furthermore, KITTI has qualitatively annotated occlusion as
integers from 0 to 2 in the increasing order of occlusion,
whereas Caltech has annotated occlusion by providing bound-
ing box of occluded portion of the ground truth.

A qualitative mapping between the evaluation constraints
across datasets is described below. By observing the occluded
samples from KITTI, a minimum visibility of 65% was en-
forced on Caltech. Truncation was handled using the following
algorithm to avoid manual annotation. First, a canonical aspect
ratio, a, was assumed. Next, to get the truncation value for
each pedestrian, a subset of all pedestrians who are very close
to the left or right or bottom boundaries was collected. Using
bounding box height h (or width w if truncation is at the
bottom), the expected width we = ha (height he = w/a)
is calculated. Finally, truncation is estimated as t =

we−w

w

(t = he−h

h
). All pedestrians with truncation less than 0.3 are

ignored. Under these constraints, Caltech has 3106 and 2425
pedestrians in training and testing sets respectively. On the
other hand, KITTI has 1785 and 1784 pedestrians in training
and validation sets respectively. So with comparable number

of images in both Caltech and KITTI, Caltech has significantly
higher number of pedestrians.

KITTI follows the general object evaluation literature,
where object detectors must match a ground truth annotation
as much as possible, irrelevant of the aspect ratio of the ground
truth or prediction boxes. Caltech on the other hand reduces
impact due to aspect ratio by standardizing all pedestrians to
a certain aspect ratio. Nonetheless, as aspect ratio corresponds
to a visual challenge (associated with pedestrian deformation),
we would like to study its impact on detection performance.
Furthermore, the requirement was introduced in [1] in order to
evaluate many detectors that were trained in different settings,
and this is not the case in this paper as we have full control over
the training parameters. Hence, no aspect ratio standardization
is performed in the experiments.

IV. EXPERIMENTAL EVALUATION

The ACF detector [19] is employed in order to study
how pedestrian attributes and dataset characteristics impact
detection performance. First, the parameters are optimized
independently for both the datasets to obtain maximum AP, and
consequently failure reasons are analyzed. The main parameter
tuned is model size, which is the size to which every possible
window in the image is re-sized before feature extraction.
Therefore, it plays a significant role in both training and test-
time. If it is too large, the detector will have difficulty in
detecting small pedestrians. On the other hand if it is too small,
the quality of features will be degraded, reducing discrimina-
tive power between pedestrian and background instances. We
sweep through template height and aspect ratio and choose
the best performing parameter. Other parameters were also
optimized, however they have more to do with the model
capacity and to some extent are dataset independent.

A. Parameter sweep on Caltech

The common parameters from [19] are optimal parameters
for easy settings (not moderate) on Caltech. However, these
parameters may not be the best when we include smaller,
occluded and truncated pedestrians. The aspect ratio is kept
fixed at the default value (2.439). The template height is swept
from 25 to 65 pixels in increments of 5. Unlike the default
difficulty settings, we now have pedestrians as small as 25 px.
in height. In order to include these small pedestrians at a larger
template size, the parameter number of octave up (henceforth
referred as δ) was set to both 0 and 1 the during testing stage.
AP at δ = 1 was 10% higher than at δ = 0. Best AP was
obtained with model size 50 by 20.5. Aspect ratio turned out
to be a very sensitive parameter. By introducing 1% change
from the default value resulted in 2.5% decrease in detection
AP.

B. Parameter sweep on KITTI

The ACF detector was optimized for KITTI as following.
The template height is swept from 40 to 60 in increments of
5. Similar to Caltech, AP plateaued around model size 50
by 20. In principle, setting δ = 1 during test time should
have resulted in increase in AP because, as the detector will
now try to detect pedestrians smaller than the template size.
However, AP did not improve. One probable reason is the

IEEE 18th International Conference on Intelligent Transportation Systems, 2015 - To Appear



TABLE I: Evaluation on KITTI and Caltech using the stan-
dardized training and testing settings. δ is the number of
octaves test image is up-sampled. θ is case where only pedes-
trians taller than 50 pixels are considered, as opposed to 25
pixels.

Testing Set

Caltech KITTI

T
ra

in
in

g
S

et

δ = 0 δ = 1 θ δ = 0 δ = 1 θ

Caltech 37.00 47.44 68.25 50.10 45.31 56.35

KITTI 17.23 17.84 34.05 57.76 57.62 65.32

difference in height distribution among the two datasets.
While Caltech has 53% of their pedestrians smaller that 50
pixels tall, KITTI has only about 21%. It could also be due
to small pedestrians in KITTI being very difficult to detect.
So the impact on Recall is more severe in Caltech than in
KITTI.

C. Overall training parameters

On both the datasets, ACF Detector was trained with
4096 depth-4 decision trees using AdaBoost. Four rounds of
hard negative mining were performed. In each round, 25,000
negatives were randomly mined and upto 50,000 of the hardest
negatives were employed. Only pedestrian windows taller than
50 pixels were consider for positive samples. Horizontally
flipped versions of pedestrians windows were also included
as positive samples. Each window was scaled to respective
model size (50 by 20.5 for Caltech and 50 by 20 for KITTI)
and padded such that the final size is 64 by 32. While ACF
on Caltech trained all the decision trees, on KITTI training
stopped early with only 1865 decision trees being trained.

D. Performance Summary

Table [I] summarizes the detection performance for differ-
ent parameter settings and for cross-dataset detection perfor-
mance as well. While δ impacts AP significantly on Caltech,
AP on KITTI essentially remains the same. Notice that cross
datasets training and testing results in significant reduction in
AP. The impact is more severe when testing on Caltech using a
detector trained on KITTI. This is likely due to the following
two reasons. (1) KITTI pedestrians may not generalize well
with Caltech pedestrians. (2) KITTI images were acquired
at a higher resolution. This could lead to detector favoring
sharper features. When the detector fails to identify sharp
features in Caltech images, it tends to discard those windows.
We believe reason 2 is more likely, and methods such as
pre-smoothing may improve generalization. We also report
AP under moderate difficulty settings, but considering only
pedestrians taller than 50 pixels (reported under θ). Now AP
on Caltech and KITTI differ only by 3%. Under this difficulty
settings both the datasets could be considered equally difficult.

V. FAILURE ANALYSIS

In order to improve any detector, it is crucial to understand
where it fails. We propose to perform this analysis using
the ROC plot. Most likely reasons for detector misses can

be visualized in Fig. 4. Colored area under each reason
corresponds to the fraction of miss rate most likely con-
tributed by them. The detector failure cases are categorized
into several cases. Localization error is defined as the fraction
of missed pedestrians that would have been detected if the
minimum overlap threshold criteria was reduced from 50%

to 20%. Miss due to height of the pedestrian is defined
as the fraction of missed pedestrians that were not detected
and are smaller than 50 pixels in height. This is definitely
relevant to KITTI, due to the detector AP being better at
δ = 0. Aspect ratio failure corresponds to the cases where
the ground truth boxes have aspect ratio that largely deviates
from the average aspect ratio. Specifically, if a missed ground
truth box has an aspect ratio larger than 3 or smaller than
2, it is considered a failure due to aspect ratio. Some cases
which can not be resolved using the aforementioned attributes
are marked into ‘others’. Priority when generating the plot
is in the order of truncation, occlusion, height, aspect ratio,
localization, and finally others. Occlusion exhibits significant
correlation with localization error especially at higher false
positives per image rate, and hence a category of occlusion
and localization occurring together was added (this was not
the case for truncated samples). Examples corresponding to
each miss case are visualized for both datasets in Fig. 5.

A. Failure on Caltech

When it comes to pedestrian detection on Caltech datasets,
failure can mainly be attributed to the datasets bias with respect
to pedestrian size. Since it has more than double the fraction
of small pedestrians compared to KITTI datasets, the failure
seems to heavily favor this reason. At fppi higher than 100,
we see that the detector detects these small pedestrians, but
with a small score. Occluded and Truncated pedestrians seem
to be almost never detected. Interestingly, the plots in Fig. 4,
show a large difference in failure case distribution among the
datasets.

B. Failure on KITTI

Detector on KITTI seems to fail largely due to different
reasons from Caltech. Occluded pedestrians are very hard to
detect on KITTI, and this highlights the difference in the kind
of bias that exists between datasets. KITTI has less number
of pedestrians who are small, however, there are significant
number of them that are occluded. Another interesting aspect
to consider is the correlation between occlusion and localiza-
tion error especially at fppi higher than 100 (light blue colored
area). This typically happens when there is a vertical pole or
another pedestrian nearby.

It would be interesting to know objects that are occluding
pedestrians. Thanks to the rich annotation provided for the
KITTI datasets, we can analyze to some extent the distribution
of occludee. With the help of depth information we can find
a set of annotated objects that are in front of the occluded
pedestrian. For this subset, we calculate the overlap area of
the missed pedestrian with the occludes. Ocludees causing
overlap above 5% are added to the distribution. Fig. 6 plots
the distribution.
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(a) Caltech (b) KITTI

Fig. 4: Failure analysis at various false positives per image (fppi) rates. It is useful to not only look at overall miss rate vs fppi
curve, but also to see the fractional contribution by various elements in the datasets. Truncation and occlusion have their usual
meaning under moderate difficulty settings. Localization error is defined as the fraction of missed pedestrian who would have
been detected if the minimum overlap threshold criteria was reduced from 50% to 20%. Miss due to height is the fraction of
missed pedestrian who were smaller than 50 pixels in height. Aspect ratio corresponds to the case where the annotated ground
truth box exhibits large deviation from the model aspect ratio.

Truncation Occlusion Occ. + Loc. Height Localization Aspect Ratio Others

Fig. 5: Examples of different possible reason for missed detections: Green boxes indicate the ground truth. Blue boxes are the
detections which fails the 50% overlap criteria. These failure are associated as localization error. Top row are the samples taken
from Caltech while the bottom row are samples from KITTI.

C. Failure Analysis Summary

In order to analyze where the detector fails, let us take a
look at the miss rate slice around 10−1 fppi. At this setting,
irrespective of the datasets, the reasons for the failure can be
majorly attributed to occlusion and lack of sufficient resolution
(i.e. small pedestrians). Although truncated pedestrians are
hardly detected, the number of instances is small. This implies
that although challenging, addressing other challenges than
truncation may provide more significant improvement in per-

formance on the datasets. Some of the high scoring false pos-
itives are visualized in Fig. 7. One particular aspect common
to all these images is presence of strong horizontal gradient.
This suggests that the detector favors gradient information over
color information and gets very confident about the presence
of pedestrian under the influence of strong horizontal gradient
component. Some of the false positive detections do not lie on
the ground plane, while some that are far away from camera,
are very tall. By estimating ground plane and depth from
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Fig. 6: Miss analysis of occluded pedestrians at various False
Positives per Image on KITTI datasets. Since occlusion is a
major contributor of misses on KITTI datasets, we further an-
alyze the occludee distribution. Color shaded area corresponds
to the fraction of occludee objects causing occlusion.

(a) High Scoring FP windows from Caltech datasets

(b) High Scoring FP windows from KITTI datasets

Fig. 7: Most likely false positive windows generated by the
detector at 10−2 false positives per image. Notice the similar
strong horizontal gradient component in all these samples.

camera one could remove some of the false positive detections.

VI. CONCLUDING REMARKS

The analysis in this paper highlights dataset bias and
common failure modes in pedestrian detection. While each
researcher attempts to generate a non-biased dataset, two
common datasets were used to exemplify inherent dataset-
bias. The evaluation strategies among the two datasets had to

be standardized and optimal parameters studied. The suitable
choice of detector parameters already hinted the existing
dataset bias, and the two datasets generated very different
distributions of failure cases, as shown in Fig. 4. The plot
also provides take-aways for researchers studying the two
datasets. While occlusion is a scene problem, height is not.
By capturing data at higher resolution, we can eliminate this
problem completely. As demonstrated quantitatively by our
study, occlusion-handling methods could reduce a significant
portion of failed detection cases.
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