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Looking at Pedestrians at Different Scales:
A Multiresolution Approach and Evaluations

Rakesh Nattoji Rajaram, Eshed Ohn-Bar, and Mohan Manubhai Trivedi

Abstract—Typically, in a detector framework, the model size is
fixed at the size of the smallest object to be detected, and larger
objects are detected by scaling the input image. The information
lost due to scaling could be vital for accurately detecting large ob-
jects, which is an essential task for vision-based driver-assistance
systems. To this end, we evaluate a multiresolution detector frame-
work by training models at different sizes and demonstrate its
effectiveness on a state-of-the-art pedestrian detector. Our com-
prehensive evaluation demonstrates meaningful improvement in
detector performance. On the KITTI dataset under moderate
difficulty settings, we achieve a 6% increase in the detector’s
average precision over the baseline single-resolution result on the
KITTI benchmark. Further insights into the detector’s improve-
ments are provided using a fine-grained analysis of the detector’s
performance at various threshold settings.

Index Terms—Computer vision, fine-grained analysis,
intelligent/safe vehicle, multiresolution model, pedestrian detection.

I. INTRODUCTION

P EDESTRIAN safety is an important issue in the intelligent
transport systems domain. Over the past decade, the essen-

tial role of computer vision in active safety systems for accident
prevention is analyzed in detail by the authors in [1]. This in
turn has led to a number of innovative ideas for pedestrian
safety. Analysis on impact of appearance pattern on pedestrian
detection [2], integrated framework for pedestrian trajectory
prediction [3], a part-based pedestrian detection and feature-
based tracking for driver assistance [4], estimating pedestrian
orientation for improved path prediction [5], active pedestrian
safety by automatic automobile maneuvering [6], driver atten-
tion monitoring [7] are some of the most recent progress in
enhancing pedestrian safety.

Looking at pedestrians from the intelligent transportation
system’s point of view is very different from the classical
case of object detection in a generic computer vision setting.
Under this setting, images captured using a camera by an
end user is typically well focused, is taken under adequate
lighting condition and the primary object of interest occupies
a significant portion of the image. Compared to this, frames
extracted from a video sequence that is captured by a camera
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Fig. 1. Both small (25 pixels) and large (100 pixels) models are trained on
the same dataset. Green box is the ground truth, whereas blue is the bounding
box from the detector. Notice that the bounding box from the smaller model is
poorly localized. In addition, corresponding confidence scores are different for
the same object. Images are resampled to the same size for visual appeal.

mounted on an intelligent vehicle has fixed focal length and
hence cannot output sharp images of all the objects in the scene.
Also, an object could appear differently under varying intensity
and direction of natural light. Typically, pedestrians travel in
groups and are constantly occluded by other pedestrians or
objects such as trees, poles or cars. Even in such constrained
settings, systems should be able to detect pedestrians in re-
altime to enhance their safety. In conclusion, we need a fast
detector that is robust to object transformation, occlusion and
truncation.

Objects appear differently when observed at different spa-
tial resolutions. A person standing 25 pixels tall will look
very differently from a person 100 pixels tall. The traditional
pipeline for object detection involves learning a detector using
the features extracted by scaling all the positive samples to a
fixed size (called model size). This elegant approach lacks the
necessary structure to exploit high resolution features, when
available. Choosing a smaller template size will allow for the
detection of smaller pedestrians at the cost of lower detector
accuracy. On the other hand, a bigger model size will yield
better detector accuracy for large pedestrians at the cost of miss-
ing out on smaller ones (unless the image is up-sampled at the
expense of additional computational cost). This phenomenon is
explained better with the example in Fig. 1. In this paper, we
evaluate a pipeline for combining multiple models trained at
different resolutions by studying its effect on detector AP.1 Each
model consists of decision trees trained using AdaBoost scheme
with pixel lookup features for fast detection. Our framework is

1AP is defined as the area under precision vs recall curve times 100. This
metric is chosen to standardize the comparison between the metrics in this paper
with KITTI benchmark results.
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implemented on top of the detector making it possible for any
detector that uses pixel lookup features to be used. To demon-
strate its effectiveness, we perform our experiments using the
publicly available Piotr’s toolbox [8].

The key contributions of this paper are as follows.

1) A principled study of multi-resolution detector frame-
work on KITTI dataset is presented.

2) Learning parameters are studied for different scales show-
ing optimal learning parameters to differ among scales.

3) A fine-grained performance analysis on different pedes-
trian sizes separately to better isolate and understand
detection performance improvement. This analysis is
inspired from [9].

4) Multi-resolution model training is carefully examined on
KITTI, demonstrating significant detection performance
gains on large pedestrians. This finding would be of great
importance for driver assistance and collision warning
systems.

5) An evaluation of the detector’s performance with data
collected in LISA lab to test the generalizability of the
trained models.

Other detection schemes are expected to benefit from key
findings of this paper. Aggregated channel features (ACF)
detector [10] is used as an example, but the problem of scale is
general over domains and objects and is important for complex
real world on-road object detection tasks.

II. RELATED RESEARCH

State-of-the-art pedestrian detectors can be broadly divided
into different categories based on channel selection, feature
computation and classification stages. Most of the recent work
[10]–[14] useRGB images as input but, some have ventured into
including stereo [18], [19] or even 3D point clouds [20], [21] as
an additional modality.

With RGB images, most of the recent work were based
on using some combination of LUV color channels, Gradient
Magnitude (GM), Histogram of Oriented Gradients (HOG) [22]
and/or it’s derivatives as the computed channels. This include,
but not limited to integral channel features ICF [12], aggregated
channel features (ACF) [10] and SubCat [17].

While ACF used a simple channel aggregation technique
as features, ICF used harr features on top of LUV + a HOG
variant (vHOG) + GM. Recent studies demonstrate the use
of more complex filters on top of these channels to achieve
higher detection accuracy. LDCF [23] implements a feature
transformation function to remove the correlation between
neighboring features. SquaresICF [24] learns multiple irregular
sized windows to aggregate the extracted features. FilteredICF
[25] uses combination of checkerboard, LDCF, PCA and
square channel filters to extract features that improve pedestrian
detector accuracy.

With convolution neural networks (CNN) leading the pack in
multi-object classification tasks [26], some of the recent meth-
ods make use of the features derived from a CNN. For example,
R-CNN [13] first minimizes the search space from millions of
windows to a few thousand probable windows and then extracts

CNN features from each window using a model that is fine
tuned on a particular dataset. This high dimensional feature is
then passed on to a support vector machine classifier. CCF [14]
uses the same framework as ACF but, adds additional channels
from a CNN. This leads to improved detector performance but,
the CNN features disregard for power-law makes the feature
pyramid construction step computationally expensive.

All the work mentioned above used a single rigid template
to perform detection. But, pedestrians have a wide variation
in appearance due to varying orientation, clothing and physi-
cal activity. To tackle such intra class variations, Deformable
parts based models (DPM) [11] formulates an object as a root
template and a number of associated parts whose position is
flexible relative to the root template. Regionlets [27], [28]
introduces appearance flexibility in the feature space. It oper-
ates by minimizing the search space to a few thousand windows
(similar to R-CNN), extracting features from a fixed number
of regions inside these windows, and then pooling them to
establish invariance to localization, scale and aspect ratio. Next,
the detected objects are re-localized using a localization model.
SubCat [17] introduces modifications on top of the detector.
Here, objects are sub-categorized into a fixed number of clus-
ters based on geometric features such as height, width, aspect
ratio, occlusion etc. and aggregated channel features. Then, a
separate model is trained for each of these clusters. Along with
improving detector accuracy, SubCat also improved orientation
estimation accuracy.

While all the above methods also apply for generic object de-
tection, pedestrian detection using a camera mounted on mov-
ing vehicle can benefit from additional geometric constraints.
MT-DPM [16] introduced resolution aware transformations to
map pedestrians in different resolutions to a common space
and also makes use of a context-aware model to suppress
false positive windows. ICF-MR [18] trains a model for each
scale in the feature pyramid and detects pedestrian at multiple
scales without re-sizing the image. It also makes use of stereo
information to estimate depth which is used to reduce the search
space. This leads to a faster detector. ACF-SC [29] makes use
of semantic segmentation and context information to improve
the ACF detector’s detection quality.

In this paper, we evaluate the performance of our multi-
resolution approach. Some of the recent work making use of
similar approach includes MultiRes [15] and MT-DPM [16].
MultiRes modifies DPM to incorporate multiple models trained
at different scales and fuse context information to improve
detector AP. This modification is integrated within the DPM
framework making it difficult to be implemented on top of
other detectors. MT-DPM uses two models trained at different
resolution and remodels DPM training framework to add in-
formation from both models. On the other hand, our proposed
approach examines separate scale-specific models, as opposed
to learning a joint two-resolution model over multi-resolution
features. Both MultiRes and MT-DPM have not reported results
on KITTI dataset. Our approach differs from existing multi-
resolution approach, ICF-MR [18] in the following ways.

1) ICF-MR employs inverted pyramid and is only reported
on Caltech dataset. We use only 2 additional scales



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

NATTOJI RAJARAM et al.: LOOKING AT PEDESTRIANS AT DIFFERENT SCALES 3

TABLE I
COMPARISON OF SELECTED STATE-OF-THE-ART PEDESTRIAN DETECTORS

Fig. 2. Pipeline of the vanilla ACF detector [10]. LUV color channels, gradient magnitude, and histogram of gradient orientations are computed from the input
RGB image as C = Ω(I). These feature channels are sum pooled and passed through a smoothing filter, resulting in lower resolution aggregated channels. Boosting
is used to learn decision trees using a vectorized aggregated channel to classify as an object or background.

and report our results on both KITTI and Caltech
datasets.

2) While ICF-MR has not reported any score calibra-
tion experiment, we show its importance in improving
detector AP.

3) The aim of ICF-MR was to implement a faster detector
whereas our aim is to perform experiments and analysis
to answer improvement in detector AP.

Selected methods are compared in Table I.

III. PROPOSED MULTI-RESOLUTION MODEL

In this section, the proposed multi-resolution detector frame-
work is described. The idea is to train multiple models in
different sizes and then during testing, run all these models on
the corresponding scales of the feature pyramid and concatenate
the bounding boxes derived from each model. The subsequent
sections will provide an in-depth explanation.

This approach can be easily implemented with any detector
that uses pixel lookup features and hence improvement in
detector accuracy due to better feature selection or development
of a better classifier is orthogonal to our analysis.

A. Vanilla ACF Detector

Our multi-resolution detector consists of several single res-
olution model trained using the ACF detector [10]. A brief
outline of this single resolution detection pipeline is shown
in Fig. 2.

Let I be an RGB input image patch of size m× n× 3.
Channels are computed as C = Ω(I), where C is a matrix of
size m× n× 10. Ten channels used are LUV color space, 6 bin
unsigned oriented gradient histogram and normalized gradient
magnitude. Features are single pixel look-ups in the aggregated
channels which are computed with Equation (1) where, ws is
the aggregation local window size and F is a 3D matrix of size⌊

m
ws

⌋
×
⌊

n
ws

⌋
× 10.

F(i, j, k) =

iws+ws−1∑
x=iws

jws+ws−1∑
y=jws

C(x, y, k)

0 ≤ i <

⌊
m

ws

⌋
, 0 ≤ j <

⌊
n

ws

⌋
, 0 ≤ k < 9 (1)

To remove noise, smoothing filters are applied to the input
image and also to the computed features. Boosting is used to
learn random forest classifier over these vectorized features.
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Fig. 3. Testing framework of the multiresolution ACF detector.

During the testing stage, some scales in the feature pyramid
are approximated using power-law to find a trade-off between
detector accuracy and runtime.

B. Training the Multi-Resolution Detector

Training process is identical to vanilla ACF training with
multiple models trained independently using different parame-
ters. Let Mi be the ACF model trained on the training set
using parameter set Pi and annotations Ai. Pi includes model
size, model padding, decision tree depth, aggregation local
window and other constants (i.e., not varied according to i).
Annotations Ai is derived from the original annotations by
ignoring objects that are shorter than the model height. For
example, a model with model size of 50 pixels by 20 pixels
will be trained only on pedestrians who are taller than 50 pixels
in height. Since each model is trained independently, the overall
training time is roughly scaled by the number of models to be
trained.

C. Testing the Multi-Resolution Detector

Identical to vanilla ACF, during the testing stage, detections
are generated for each model independently and later combined
using one of the methods discussed below. This pipeline is
represented in Fig. 3. Since all the models use the same chan-
nels, channel pyramid can be shared among different model.
In-fact, if the ACF feature pooling local window size (ws)
is the same for different models, then the feature pyramid
itself can be shared between multiple models. Or, if they form
a geometric progression, feature pyramid can be recursively
calculated without additional computation time. Since feature
pyramid computation is the most expensive operation during
runtime, multi-resolution detector runtime does not scale by the
total number of models.

The method proposed to generate the joint detection D is as
follows. Let Di be the detection bounding boxes generated by
model Mi. Di = {di1, di2, . . . dij , . . .}, 1 ≤ j ≤ ni, where ni

is the number of objects detected by model Mi. Each detected
bounding box is written as dij = {Rij , cij}, where Rij defines
the object boundary with confidence score cij . We create a new
detection set for each model Mi as D′

i = {d′i1, d′i2, . . . d′ij , . . .}
where d′ij = {Rij , c

′
ij} and c′ij = fi(cij). Here fi is the score

transformation function for model Mi. We experiment with
the following score transformation functions and report their
impact on detector performance.

1) No Transformation: c′ij = cij
2) Linear Transformation: c′ij = kicij where ki is the scal-

ing factor for each model.
3) Affine Transformation: c′ij = kicij + oi where ki is the

scaling factor and oi is the score offset for each model.
4) Min-Max Normalization:

c′ij =

(
cij − cmin

i

)
(
cmax
i − cmin

i

)
cmin
i = min

j
{cij}, cmax

i = max
j

{cij} 1 ≤ j ≤ ni

5) Sigmoid Normalization:

c′ij =
1

1 + e−kicij

Why a simple concatenation may not work is reasoned in
Fig. 1 where the confidence scores (and the bounding boxes)
generated by different models on the same pedestrian produced
dissimilar scores. Scores can also be calibrated to give more
importance to higher-resolution pedestrians as they are close to
the vehicle. For a further study of model score normalization
and combination for possible further gains in performance,
reader is refered to [30]. Yet, simple transformations were
shown to work well (Table V).

The scaled detections D′
i from each models are concatenated

and Non-Maximal Suppression (NMS) is applied to this super-
set to generate the final detections D.

IV. DATASETS

A. KITTI

KITTI dataset [31] is captured by driving around the city of
Karlsruhe, Germany, in rural areas and on highways. Frames
are extracted from videos captured at 10 fps, thereby generating
7481 training images and 7518 test images. These images are
then cropped to resolution of 1242 × 375 and thereafter ran-
domized. To run our experiments a validation set was created
as follows. Apply the inverse mapping to remove the random
jumbling of images and then separate them into corresponding
video clips. This generates 144 video sequences with an average
of 52 frames each. They are divided into training and validation
sets such that each set contains comparable number of frames
and pedestrians. This is achieved by sorting the video according
to the number of pedestrians and manually assigning videos to
different sets. We had 3742 and 3739 images in our training and
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Fig. 4. Sample images with annotations from the two studied datasets. On comparison with images from the Caltech dataset, images from the KITTI dataset are
captured using a camera that has a higher field of view and produces sharper images.

validation sets respectively. Sample images with annotations
from KITTI dataset are shown in Fig. 4. Since multi-resolution
approach and the comprehensive evaluation depends on the
distribution of pedestrian height and aspect ratio,2 we have
included their histogram plots in Fig. 5. KITTI differentiates the
difficulty in identifying pedestrians based on height, occlusion
and truncation which is summarized in Table II.

B. Caltech-USA

The common evaluation split is performed [32], where the
first six out of the 10 available sets of data are split into training
and the remaining for testing. Each video clip has a resolution
of 640 × 480 and is recorded at 30 frames per second. By
periodically sampling at 1 second, we extract about 60 frames
per video clip. This translates to 4250 and 4024 images in the
training and testing set, respectively.

First, for performing the experimental analysis, we seek to
standardize evaluation among KITTI and Caltech. For instance,
Caltech does not annotate truncation, hence the moderate
settings constraints cannot be enforced directly on Caltech.
Furthermore, KITTI has qualitatively annotated occlusion as
3 different categories, whereas Caltech has annotated occlu-
sion by providing bounding box of occluded portion of the
ground truth.

A qualitative mapping between the evaluation constraints
across the datasets is described below. By observing the oc-
cluded samples from KITTI, a minimum visibility of 65% was
enforced on Caltech. Truncation was handled using the follow-
ing algorithm to avoid manual annotation. First, a canonical
aspect ratio (a), was assumed. Next, to get the truncation value
for each pedestrian, a subset of all pedestrians who are very
close to the left or right or bottom boundaries was constructed.
Using bounding box height h (or width w if truncation is at
the bottom), the expected width we = ha (height he = w/a) is
calculated. Finally, truncation is estimated as t = (we − w)/w
(t = (he − h)/h). All pedestrians with truncation greater than

2Aspect ratio is defined as the ratio of bounding box height to bounding
box width.

Fig. 5. Comparison of the pedestrian height and aspect ratio across datasets.
Although the Caltech dataset has more annotated pedestrians, the KITTI dataset
has a better distribution of pedestrian heights. Caltech dataset has a larger
fraction of pedestrians shorter than 50 pixels in height. In addition, the Caltech
dataset has a slightly larger variation in the aspect ratio.

TABLE II
DISTRIBUTION OF PEDESTRIANS IN THE KITTI DATASET INTO

DIFFERENT DIFFICULTY SETTINGS BASED ON HEIGHT,
OCCLUSION, AND TRUNCATION

0.3 are ignored. Under these constraints, Caltech has 3106 and
2425 pedestrians in training and testing sets respectively. On the
other hand, KITTI has 1785 and 1784 pedestrians in training
and validation sets respectively. So with comparable number of
images in both Caltech and KITTI, Caltech has significantly
higher number of pedestrians.

Note that in [32], the author had to evaluate many detectors
that were trained using different aspect ratio and hence was
standardized. However, in this paper, as we have full control
over the training parameters, no aspect ratio standardization is
performed in the experiments.
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TABLE III
SINGLE-RESOLUTION MODEL DETECTION RESULT AT DIFFERENT

DIFFICULTY SETTINGS ON THE KITTI DATASETS. ADDING

HARD POSITIVE SAMPLES TO THE TRAINING SET APPEARS

TO HAVE A LIMITED EFFECT ON DETECTOR ACCURACY

V. EXPERIMENTAL ANALYSIS

A. Overall Training Parameters

On both the datasets, ACF detector was trained with a
maximum of 4096 decision trees using AdaBoost. Four rounds
of hard negative mining were performed. In each round, 25,000
negatives were randomly mined and up to 50,000 of the hard-
est negatives were employed. Horizontally flipped versions of
pedestrians windows were also included as positive samples.

B. Single Resolution ACF Result

1. KITTI: Various parameters of the detector were grid-
optimized to maximize AP at each difficulty setting. Model
aspect ratio was fixed at 2.5, the median of the aspect ratio dis-
tribution. In order to include small pedestrians (height, h < 50)
at a larger template size, experiments were performed with two
different values of the parameter, number of octave up (δ).3

Highest AP was obtained using a model with height mh = 50
and width mw = 20 (with padding mh = 64 and mw = 32).
We call this model M50 s where, 50 is the model height and s
indicates single resolution. At δ = 0, under moderate difficulty
settings, detector achieved 61.96% AP. However, at δ = 1,
AP decreased to 60.82%. This suggests that an increase in recall
by detecting pedestrians smaller than 50 pixels is shadowed
by the reduction in precision due to increase in false detec-
tions. Table III summarizes the detection AP on permutations
of difficulty settings on the KITTI dataset. It appears that
the detector trained on moderate difficulty settings performs
“marginally” better compared to training on other difficulty
settings, irrespective of the testing set difficulty. However, the
difference is too small to draw any conclusion.

2. Caltech-USA: Nature of this experiment is similar to the
one performed on KITTI dataset. Experiments are started with
optimal parameters already available from PMT [8]. These are
optimal for “reasonable” difficulty settings (pedestrian taller
than 50 pixels and have at least 65% visibility). Maximum AP
at 46.54% was achieved with mh = 50, mw = 20.5 and δ = 1.
Positive samples used for training were changed to include
pedestrians taller than 25 pixels (instead of 50) and visibility
greater than 65%. We will refer to this model as M50 s.

C. Multi-Resolution ACF Result

1. KITTI: Experimental result from Table III suggests mod-
erate difficulty setting to be well suited for training ACF

3Image is upsampled by 2δ in both spatial dimensions.

TABLE IV
MULTIRESOLUTION MODEL PARAMETERS USED FOR TRAINING

THE ACF DETECTOR ON THE KITTI DATASET

TABLE V
MULTIRESOLUTION ACF DETECTOR PERFORMANCE WITH DIFFERENT

CONFIDENCE TRANSFORMATIONS ON THE KITTI DATASET. LABEL p1i
IS ki FOR LINEAR, AFFINE, OR SIGMOID TRANSFORMATION AND cmin

i

FOR THE MIN–MAX TRANSFORMATION. LABEL p2i IS oi FOR THE AFFINE

TRANSFORMATION AND cmax
i FOR THE MIN–MAX TRANSFORMATION

detector on KITTI datasets. Also, under hard difficulty settings,
around 2% of the pedestrians were not recognized by humans
[31]. Hence, we analyze the multi-resolution model result under
moderate difficulty settings. We trained models with different
parameters (model size—[mh mw], padding, tree depth, shrink)
and our experiments suggested that by using just 3 models, most
of the detector AP gain could be achieved. Aspect ratio was
fixed at 2.5. Each model was tested on a subset of pedestrians
taller than the model height (i.e. δ = 0). Other parameters were
tuned to maximize AP. AP started decreasing for mh > 100.
This is likely due to lack of sufficient positive training samples.
We choose M25 m, M50 m, and M100 m for further experiments.
Here, m stands for multi-resolution. Optimal parameters are
tabulated in Table IV.

To get the overall precision vs recall (PR) curve on mod-
erate difficulty settings, we transform confidence score as dis-
cussed in Section III-C. The parameters are grid-optimized
to maximize AP. Results along with parameters are tabulated
in Table V. Without score transformation the multi-resolution
detector perform poorly compared to the single resolution
counterpart. Min-max normalization performed poorly due to
all the models having similar score limits. As a result, score
normalization had no impact on the final scores. Also, linear,
affine and sigmoid transformations yield very similar results.
Hence, all further experiments will be performed solely with
linear transformation.

Fig. 6 plots the PR curves and compares the detector AP
between single and multi-resolution detector for different range
of pedestrian height. We see that curve for M100 m is always
above the curve for M50 s, evaluated for 25 < h < 50. Since
M50 s and M50 m are trained using the same set of annotations
and parameters they are interchangeable and hence produce
identical result. However, M25 m did not perform as expected.
Initially the curve for M25 m is above the corresponding sin-
gle resolution curve (M50 s, tested with δ = 1), but falls off
rapidly with increasing recall value, suggesting over-fitting.
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Fig. 6. Comparison of the PR curve for single and multiresolution models using the ACF detector. Curves in red (blue) correspond to a single (multi) resolution
detector. See the legend in the plot for the model(s) used and the corresponding AP achieved. Testing height range (h) is mentioned as a subcaption under
each plot.

Overall,M50 s does a better job of detecting smaller pedestrians
than M25 m. This observation is likely due to the following
reasons.

• Although up-sampling does not add additional informa-
tion, aggregating channels could still improve detection
accuracy.

• HOG channels calculated using a fixed filter i.e., [−1 0 1]
benefits by up-sampling image when detecting small
objects.

In Table IV, we see that the model sizes are multiple of 2
and so is aggregation window ws. Therefore, all the models
use same number of features ((h/ws)(w/ws)c = (64/2)×
(32/2)× 10 = 5120) but, bigger models are performing better
than the smaller ones. This is likely due to the following
reasons.

• Pedestrians at lower resolution are inherently difficult
to detect due to bias in data collection, i.e., the testing
samples are difficult cases.

• Although each model has the same number of features,
without aggregation, the HOGv features are sparse i.e.,
out of 6 bins at-most 2 bins are populated per pixel, but,
by aggregating over large ws more bins are likely to be
populated.

2. Caltech-USA: Multi-resolution experiments performed
on Caltech dataset is similar to the one performed on KITTI
dataset. One difference from single resolution experiment is
that the multi-resolution models are trained with all positive
samples taller than the corresponding model size. Optimal
parameters are tabulated in Table VI.

TABLE VI
MULTIRESOLUTION MODEL PARAMETERS USED FOR TRAINING

THE ACF DETECTOR ON THE CALTECH DATASET

Fig. 6 plots the PR curves and compares the detector AP
between single and multi-resolution detector for different range
of pedestrian height. Similar to our experiments on KITTI
dataset, M25 m performed worse than M50 s (with δ = 1)
under 25 < h < 50, whereas M50 m and M100 m models per-
form better than M50 s under 50 < h < 100 and 100 < h < ∞,
respectively. However, due to the bias in distribution of pedes-
trian height i.e., a significant amount of pedestrians smaller
than 50 pixels leads to M50 s performing better than M25 m +
M50 m +M100 m. But, if we take a look at “reasonable” dif-
ficulty settings, M50 m +M100 m performs slightly better than
M50 s (δ = 0) (67.24% vs 66.91%).

This improvement is smaller than what was achieved on
KITTI dataset and is most likely due to the lack of significant
amount of pedestrians taller than 100 pixels.

VI. COMPARATIVE PERFORMANCE ANALYSIS

In order to improve any detector, it is crucial to understand
where it fails. We propose to perform this analysis using the
miss rate vs false positives per image (FPPI) plot. Most likely
reasons for detector misses can be visualized in Fig. 7. Colored
area under each reason corresponds to the fraction of miss rate
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Fig. 7. Failure analysis at various FPPI values. Truncation and occlusion have their usual meaning under moderately difficulty settings. Localization error is
defined as the fraction of the missed pedestrian who would have been detected if the minimum overlap threshold criteria were reduced from 50% to 20%. Miss due
to height is the fraction of the missed pedestrian who was smaller than 50 pixels in height. Aspect ratio corresponds to the case in which the annotated ground truth
box exhibits a large deviation from the model aspect ratio. (a) Caltech: M50 s, 25 < h < ∞. (b) KITTI: M50 s, 25 < h < ∞. (c) KITTI: M50 s, 100 < h < ∞.
(d) KITTI: M100 m, 100 < h < ∞.

most likely contributed by them. The detector failure cases are
categorized into several cases as follows. Localization error
is defined as the fraction of missed pedestrians that would
have been detected if the minimum overlap threshold criteria
was reduced from 50% to 20%. Miss due to height of the
pedestrian is defined as the fraction of missed pedestrians that
were not detected and are smaller than 50 pixels in height.
This is relevant to KITTI on account of higher detector AP
at δ = 0. Aspect ratio failure corresponds to the cases where
the ground truth boxes have aspect ratio that largely deviates
from the average aspect ratio. Specifically, if a missed ground
truth box has an aspect ratio larger than 3 or smaller than 2,
it is considered a failure due to aspect ratio. Some cases which
cannot be resolved using the aforementioned attributes are
marked as ‘others’. Priority when generating the plot is in the
order of truncation, occlusion, height, aspect ratio, localization,
and others. Occlusion exhibits significant correlation with lo-
calization error especially at higher FPPI, and hence a category
of occlusion and localization occurring together was added (this
was not the case for truncated samples). For each of these cases,
Fig. 8 provide examples from both datasets.

A. Analysis on KITTI Dataset

It appears that occluded pedestrians are very hard to detect on
KITTI dataset. The dataset has a smaller fraction of pedestrians
who are small however, a significant fraction of them are oc-
cluded. Another interesting aspect to consider is the correlation
between occlusion and localization error especially at FPPI
higher than 100 (light blue colored area). This typically happens
when there is a vertical pole or another pedestrian nearby.

It would be interesting to know objects that are occluding
pedestrians. Thanks to the rich annotation provided for the
KITTI dataset, to some extent, we can analyze the distribution
of occludee. With the help of depth information we can find a
set of annotated objects that are in front of the occluded pedes-
trian. For this subset, we calculate the overlap area of the missed
pedestrian with the occludes. Ocludees causing overlap above
5% are added to the distribution. Fig. 9 plots this distribution.

Although M100 m has higher detector AP compared to M50 s,
from Fig. 7(c) and (d) we see that most of this gain is
contributed by fully visible pedestrians (yellow and gray
colored regions). This suggests that the M100 m model does not
implicitly learn to detect occluded and truncated pedestrians.
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Fig. 8. Examples of different possible reasons for missed detections. Green boxes indicate the ground truth. Blue boxes are the detections, which fail the 50% over-
lap criteria. These failures are categorized as localization errors. Top row shows the samples taken from Caltech, whereas the bottom row shows samples from KITTI.

Fig. 9. Failure analysis of occluded pedestrians at various FPPI values on the
KITTI dataset. Since occlusion is a major contributor of misses on the KITTI
dataset, we further analyze the occluded distribution. Color-shaded regions
correspond to the fraction of occluded objects causing occlusion and regions
without color correspond to objects that are not occluded.

B. Analysis on Caltech Dataset

When it comes to pedestrian detection on Caltech dataset,
failure can mainly be attributed to the dataset bias with respect
to pedestrian size. Since it has more than double the fraction
of small pedestrians compared to KITTI dataset, the failure
seems to heavily favor this reason. At FPPI higher than 100, we
see that the detector detects these small pedestrians albeit with
lower confidence. Occluded and Truncated pedestrians seem to
be almost never detected.

C. Discussion

In order to analyze where the detector fails, let us take a
look at the miss rate slice around 10−1 FPPI. At this setting,
irrespective of the datasets and model size, reasons for failure
can be majorly attributed to occlusion and lack of sufficient

Fig. 10. Most likely false-positive windows generated by the detector at
10−2 false positives per image. Notice the similar strong horizontal gradient
component in all these samples. (a) High-scoring FP windows from the Caltech
dataset. (b) High-scoring FP windows from the KITTI dataset.

resolution (i.e. small pedestrians). Although truncated pedestri-
ans are hardly detected, the number of instances is small. This
implies that although challenging, addressing other challenges
than truncation may provide more significant improvement in
performance. Selected high scoring false positives are visu-
alized in Fig. 10. One particular aspect that is common to
all these images is the presence of strong horizontal gradient.
This suggests that the detector favors gradient information over
color information and gets very confident about the presence
of pedestrian under the influence of strong horizontal gradient
component. Some of the false positive detections do not lie on
the ground plane, while some that are far away from camera,
are very tall. By incorporating the approach presented in [33],
we can enforce geometric constraints to remove some of these
false positive detections.
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Fig. 11. Comparison of pedestrian detectors on the KITTI evaluation server
under moderately difficulty settings. Detector AP is mentioned in the legend.

TABLE VII
COMPARISON OF ACF-BASED APPROACHES, EVALUATED

ON THE KITTI EVALUATION BENCHMARK

VII. MULTI-RESOLUTION ACF RESULT ON

EVALUATION BENCHMARK

With the optimal parameters tuned on validation set, an-
other multi-resolution detector was trained on the entire KITTI
training set. Using the scaling factor of 0.5 for 25 pixels
model detections and 1.1 for 50 pixels model detections, final
detections were generated by concatenating detections from
25, 50, and 100 pixels models and then applying NMS. On
KITTI Vision Benchmark Suite [31], our detector achieved
46.23% AP which is about 6% more than 39.81% AP achieved
by ACF.

Although methods such as Regionlets [27], FilterdICF [25],
pAUCEnsT [34] (refer Fig. 11) achieve better performance, all
these methods improve feature selection process and hence is
orthogonal to the improvements achieved by multi-resolution
approach. Multi-resolution approach can be implemented on
top of these methods and further improvements in detector
accuracy is expected.

On KITTI Evaluation benchmark,4 under pedestrian detec-
tion, there are three published methods that make use of the
aggregated channel features. They are compared in Table VII.
Note that the addition of multi-resolution models results in the
highest AP gain.

VIII. EVALUATION ON LISA DATASET

While the evaluation metrics associated with a detector
trained and tested on the same dataset is a good starting point
to evaluate it’s performance, it is important to test a detector’s

4Available: http://www.cvlibs.net/datasets/kitti/eval_object.php

performance on data collected from a different camera at a dif-
ferent location. This is especially the case with systems trained
offline and deployed in vehicles under different conditions.
Such evaluation will give us some insights into robustness of
the detector.

In order to perform the above evaluation, we created a testing
dataset consisting of 775 frames captured in UCSD campus.5

The frames are extracted from 2 video sequence captured at a
resolution of 1280 × 420. This data is visually different from
the two commonly used datasets i.e. KITTI and Caltech. We
annotate all pedestrians taller than 50 pixels, at-most partially
occluded and truncated. Other people in the scene are annotated
as “ignore”. This translated to 848 pedestrians and 548 “ignore”
boxes. 32% of the pedestrians are taller than 50 pixels but,
shorter than 100 pixels whereas the rest 68% are taller than
100 pixels.

When ACF detector with single resolution approach with
M50 s trained on KITTI was applied on our dataset, detector
AP of 65.15% was achieved. Whereas with multi-resolution
approach (M50 m +M100 m), detector AP increased to 68.57%.
Fig. 12 has sample detections from M50 m and M100 m.

This suggests that the ACF detector trained on KITTI dataset
seems to generalizes well with data collected from a different
source and in a different part of the world.

IX. CONCLUDING REMARKS

Running detector with multiple models, trained at different
resolutions has significant impact on the performance of the
detector. On KITTI evaluation server, under moderate diffi-
culty settings, detector AP increased from 39.81% to 46.23%.
Applying the trained models to different dataset (LISA), we
achieved similar detector performance and also similar trends
with multi-resolution approach. Detailed analysis shows that
aggregating channel over a larger window plays a signifi-
cant role in improving the performance of multi-resolution
approach.

In the context of deploying a pedestrian detection system for
intelligent vehicles, the following conclusions can be drawn:

1) Pedestrians shorter than 50 pixels are harder to detect
but, in the context of intelligent vehicles taller pedestrians
are closer to the vehicle and hence needs more attention.
This is achieved when using the multi-resolution detector
approach by tuning the score calibration function as
required.

2) Occluded pedestrians are hard to detect and a higher
resolution model does not implicitly learn to detect them.
Considerable occlusion occurs due to pedestrians trav-
eling in groups. This is especially true in urban driving
scenarios.

3) Current implementation (no feature pyramid sharing)
runs under 0.6 seconds per image. ACF-MR achieves
highest AP for detector running under 1 sec. This is
especially critical in active safety systems for driver
assistance.

5Available: http://cvrr.ucsd.edu/rnattoji/LISA_PedestrianDataset.zip

http://www.cvlibs.net/datasets/kitti/eval_object.php
http://cvrr.ucsd.edu/rnattoji/LISA_PedestrianDataset.zip
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Fig. 12. Sample annotations with detections using the ACF detector models M50 m and M100 m, trained on KITTI and tested on the LISA dataset. Green boxes
indicate the ground truth. Blue boxes are the detections. Red box shows the “ignore” region. The text inside the blue box indicates the confidence score. The only
detection with a score higher than 50 is shown. Notice the variation in scores between the models, verifying the need for score calibration.

Robust and fast pedestrian detection is a critical first step in
predicting pedestrian intent and driver attention for surveillance
of safety critical events which in turn is essential for building
a reliable safety system for self driving and highly automated
vehicles.
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