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We propose two online-learning algorithms for modeling the personal preferences of users of interactive 
systems. The proposed algorithms leverage user feedback to estimate user behavior and provide personalized 
adaptive recommendation for supporting context-dependent decision making. We formulate preference 
modeling as online prediction algorithms over a set of learned policies, i.e., policies generated via supervised 
learning with interaction and context data collected from previous users. The algorithms then adapt to a target 
user by learning the policy that best predicts that user’s behavior and preferences. We also generalize the 
proposed algorithms for a more challenging learning case in which they are restricted to a limited number of 
trained policies at each time step, i.e., for mobile settings with limited resources. While the proposed algorithms 
are kept general for use in a variety of domains, we developed an image-filter-selection application. We used 
this application to demonstrate how the proposed algorithms can quickly learn to match the current user’s 
selections. Based on these evaluations, we show that (1) the proposed algorithms exhibit better prediction 
accuracy compared to traditional supervised learning and bandit algorithms, (2) our algorithms are robust 
under challenging limited prediction settings in which a smaller number of expert policies is assumed. Finally, 
we conducted a user study to demonstrate how presenting users with the prediction results of our algorithms 
significantly improves the efficiency of the overall interaction experience.
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mobile computing; • Computing methodologies → Machine learning approaches.
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1 INTRODUCTION
Context-dependent decision making is a cognitive process of selecting an optimal action from a 
set of actions depending on the current situational context. In the daily use of interactive systems
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such as smartphones, users often need to perform context-dependent decision making to achieve
their goals. For instance, users of a photo-sharing social networking service (SNS) (e.g., Instagram)
repeatedly select their photos and add aesthetic image filters then upload them to their accounts.
Previous studies reported that repeated decision making increases cognitive load and can cause
decision fatigue, which can lead to irrational (sub-optimal) decisions [3, 31].
The overall goal of our research is to build a human-computer interaction (HCI) framework

to support repeated context-dependent decision making on the daily use of interactive systems.
Especially, we are interested in supporting user selection that frequently occurs in diverse contexts
to select actions from several candidates based on user preferences. Towards this goal, we aim to
develop an automated recommendation method for predicting user actions on the basis of past data
and the current situational context. As a concrete example, we develop an image-filter-selection
application to predict user selection from a list of image filters on the basis of an estimation of
a user’s preferences. We expect that such prediction and suggestion will help users select from
possible choices (e.g., preset image filters). However, to assist user decision-making of filter selection,
the prediction and suggestion should reflect user preferences and context information (i.e., features
of given images).

We view this problem as user-preference modeling that adapts user preferences from sequential
observations of context information and user selection. This user modeling setting is aimed at
building a personalized policy to predict selections of a target user. However, building a personalized
policy usually requires a large amount of target-user selections as training data. To reduce the
amount of training data, we take a data-driven approach for predicting target-user selections by
using a database of other users’ selections. With such a database, we can follow machine learning
behaviors that compute the features of context information and apply the data to supervised
learning algorithms to predict target-user selections.

We propose two online learning algorithms of user modeling to learn personal user preferences
for predicting context-dependent user selection on the basis of online prediction approaches [7, 8].
Our learner has a set of policies that are learned with supervised learning from a dataset created
from other users. This approach then quickly adapts to target-user preferences by learning and
tracking the optimal policies that best describe the target-user selections.

We consider a setting of this online-prediction problem for each of our proposed algorithms. The
algorithm for the first setting is allowed to obtain prediction results from all policies in a set. It
updates the weights of all the policies sequentially to find an optimal policy for the given target
user. We call this online-prediction setting “All Prediction”. The algorithm for the second setting is
allowed to obtain a limited number of prediction results from the number of policies. We call this
setting “Limited Prediction.” This algorithm efficiently searches for an optimal policy from such
limited observations. This Limited Prediction setting sometimes occurs when an online learner has
a large number of policies in a set or computational resources are limited such as on mobile devices.
The main contribution of this work is twofold: (1) we developed two algorithms for online

personal preference modeling in both All Prediction and Limited Prediction settings, and (2) applied
the proposed algorithms to an image-filter-selection application we developed with a personalized
recommendation function, as shown in Figure 1. To evaluate the proposed algorithms, we created
a novel dataset for user selections of image filters. We conducted a series of evaluations and a
pilot user study to investigate how the filter recommendations from the proposed algorithms help
improve the user-selection process. We summarize the findings from our evaluations as follows:

• The proposed algorithm for the All Prediction setting could model personal preferences for
each user dataset over baselines. The prediction performance also could be tuned by settings
of reward functions.
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Fig. 1. Image-filter-selection application. Application contains preview window
and filter-selection window. Preview window shows original/filtered images that
user can check with selected filters. Application shows top-1, -2, and -3 recom-
mended filters, which are highlighted in red, orange, and green, respectively.

• The prediction performance of this algorithm was able to improve as the number of policies
in a set increased.
• The proposed algorithm for the Limited Prediction setting could model the personal prefer-
ences of user selections using few predictions from the subsets of policies.
• In our pilot study, we observed the potential effectiveness of the recommendation interface
of our image-filer-selection application to assist context-dependent user selections.

The rest of the paper is organized as follows. In Section 2, we introduce previous studies on
data-driven recommendation and personalization for interactive systems. In Section 3, we describe
the problem formulation and our approach as well as the proposed algorithm for the All Prediction
setting. In Section 4, we give details on the problem definition of the Limited Prediction setting and
the proposed algorithm for this setting. In Sections 5 and 6, we present our image-filter-selection
application and data collection for the evaluations, respectively. In Section 7, we present the main
results of our evaluations for both problem settings. In Section 8, we describe our pilot user study
to investigate the effectiveness of the recommendations from our algorithms on context-dependent
user selection of image filters. In Section 9, we provide discussions on our evaluations and user
study as well as open problems. Finally, we conclude the paper and mention future work in Section
10.

2 RELATEDWORK
2.1 Recommendation based on Contents and User Preferences
Traditional recommendation systems have been developed using collaborative filtering techniques
with other user histories [1]. This approach significantly impacts several web services such e-
commerce sites [22, 27] and music recommendation [5, 20, 32]. Although they have several com-
putational advantages, collaborative filtering techniques require matrix representation for users
and content. They thus cannot be easily applied if all users rate different items. For example, in an
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image-filter selection for a photo-sharing SNS, users have individualized content (images) for which
to select filters to upload to their accounts. We thus decided to take a learning-based approach that
predicts user selections from context information (features) of given content.

Multi-armed bandit is a problem setting on online machine learning in which an online learner
aims to find an optimal (most rewarded) arm (policy) from a pre-set of arms based on sequential
observations. Previous studies used bandit algorithms for recommendation of news articles [21]
and e-commerce [6]. In the bandit settings, an online learner selects and uses an arm from sets
then updates the score of the selected arm for balancing between exploitation and exploration. In
contrast, we focused on another online learning setting that allow an online learner to observe
multiple or all predictions from a set of policies (All Prediction setting).

2.2 Bandit Approaches for Limited Observation Settings
Recent studies considered a novel bandit setting in which an online learner is allowed to access a
limited number of arms (more than one and less than the numbers of arms) [28, 34]. Unlike the
bandit problem, a learner is allowed to update scores for multiple arms. The studies by Seldin et
al.and Kale et al.proposed algorithms for a limited advice setting in which a learner can access
a fixed number 𝑀 of arms from 𝑁 arms in each time step (1 < 𝑀 < 𝑁 ) [16, 28]. Yun et al.also
proposed an algorithm for a similar setting that takes into account observation costs of arms
and current budgets, i.e., 𝑀 can be different in each time step. Qin et al.proposed a contextual
combination bandit algorithm that a learner selects a set of arms as a super arm then receives user
feedback to update scores of selected items [26].
We also consider the limited observation setting with a fixed number of observable policies

(Limited Prediction setting) in which our algorithm for this setting effectively finds a combination
of policies for personalized recommendation. With such a setting, the previous algorithms use an
arm and update scores of𝑀 − 1 arms in each time step [28, 34]. Unlike the previous algorithms, we
focus on a combination of existing user preferences to model a new user preference. To this end,
our limited prediction algorithm uses a weighted combination of 𝑀 policies and updates the 𝑀
policies in each time step.

2.3 User Preference Modeling for Interactive Systems
HCI studies have introduced principles of preference learning [13] to generate personalized user
interfaces [10, 14, 23]. Findlater and Wobbrock proposed a personalized learning method for
touchscreen typing [11]. Recent studies proposed preference learning techniques for mining user
behaviors [2, 12, 24, 35]. Fogarty et al.proposed Cueflik, which uses a concept learning technique to
provide a personalized image search by using explicit user feedback [12]. Mehrotra et al.proposed
PrefMiner, a personalization method for smart notifications on smartphone devices [24]. PrefMiner
learns necessity notifications on the basis of mining their interactions with mobile phones. Our
algorithms directly learns target user preferences from sequential user selections to assist users’
decision making. Our learner then updates a preference model for the target user.
Color enhancement systems for photo images based on user preferences have recently been

proposed. Koyama et al.proposed an intelligent interface for visual design exploration that intro-
duces general preference analysis using crowd-sourcing [17]. Since this approach explores general
preferences for given images, individual preference is sometimes eliminated after a parameter
exploration process. In contrast, our approach involves learning personal preferences of target
users to predict a target user’s selection on the basis of content information and preferences.

Koyama et al.also presented the SelPh system, which provides support functions for photo color
enhancement by sequentially learning personal preferences in parameter spaces [18]. Learning
personal preferences for diverse context spaces (e.g., photos) sometimes requires a large amount
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of user feedback. In contrast, our approach involves using other user data to generate multiple
individual policies then quickly detecting the optimal policy that best predicts the target user’s
selection. Note that our aim is to predict user selections from discrete candidates of possible actions.

3 ONLINE PERSONAL PREFERENCE USER MODELING
Our algorithms are used for user modeling that can predict the current user’s preferences in
an online manner. The algorithms leverage pre-trained policies learned in a supervised manner
from previous users for the interactive system to adapt to the current target user. We develop a
practical application in which we have access to previously observed user data, which is practical
for applications using ubiquitous technologies. Specifically, the proposed algorithms use previous
user data of observed contexts (e.g., image features) and user selections (e.g.filter selection) as a
dataset for learning a set of policies in a supervised manner. Each policy can be used to predict
user selection from a feature vector of context information, but this learned policy is assumed to
be user dependent. In the online learning phase, we must determine how to leverage this set of
policies to best accommodate the user currently interacting with the system. Hence, our approach
combines supervised learning i.e., the set of policies, with the All Prediction setting i.e., modeling
the preferences of the current user.
Figure 2 shows a conceptual diagram of our image-filter-selection application with our online

user modeling. The application contains an interactive system, our online learner, a feature extractor,
and set of policies for predicting user selection. Our online learner outputs a prediction result to
the interactive system to assist a target user in selecting filters. Our learner receives an image as
context information in each time step and extracts context features to obtain a set of prediction
results from each policy. The learner also selects a prediction result on the basis of the importance
of each policy. The learner also receives user selection as an action label to update the importance
in each time step.
We propose online-learning algorithms for two realistic scenarios. We first study an online

learning algorithm for the All Prediction setting [7, 8] to find the best performing policy from an
existing set of policies. In this setting, we assume unconstrained computing resources so that our
algorithm could detect the sequential observation of a target user and detect the best performing
policy out of the entire set of previously observed policies. Our learner chooses a policy with the
current optimal performance in each selection step and maintains a weight over all previously
observed policies on the basis of prediction performance.

We also considered a more challenging scenario (common to resource-constrained mobile com-
puting) in which the learner is not able to access all predictions from the complete set of policies,
i.e., prediction with our algorithm for the Limited Prediction setting. In such a case, the learner
is only allowed to obtain a limited number of predictions in each time step. This setting adds an
additional learning challenge of being able to select the most informative policies.

3.1 Formulation
The goal with our online-learning algorithms is to predict the current user’s selection of an action
𝑎 ∈ A from a set of candidate actionsA. The prediction is made in every time step 𝑡 by using context
(environment) information x𝑡 ∈ X from an interactive system. The algorithms use the current
context x𝑡 to predict a probability distribution over the candidate actions p𝑡 ∈ [0, 1] |A | (Σ𝑖𝑝𝑖𝑡 = 1).
The application then displays the results to the interactive system, which returns the user selection
𝑎𝑡 . A prediction reward can be computed from 𝑎𝑡 and prediction results as 𝑟𝑡 = 𝑅𝑒𝑤𝑎𝑟𝑑 (𝑎𝑡 , p𝑡 ) to
update the learner for the next prediction.

In our image-filter-selection problem in which the data are streaming and a pair of an observation
and partial label (e.g., which filter was selected) are given at each 𝑡 . Hence, we take a prediction
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Fig. 2. Conceptual diagram of our image-filter-selection application with our
online user modeling

approach with the All Prediction setting to detect the optimal policy for the current target user. In
this case, the learner has a set of existing policies Π = {𝜋1, 𝜋2, ...𝜋𝑁 } (𝑁 = |Π|), where each policy
has the ability to predict a user’s preferred selections from context information 𝜋𝑖 : X → A. In a
given 𝑡 , the learning goal is to choose one of the policies to obtain a prediction result 𝜋 (x𝑡 ) = pt.
Consequently, the learner observes the actual 𝑎𝑡 .
The success of an online-learning algorithm is measured by its relative cumulative loss on the

observed sequence when compared against the loss of a single policy. This value, also known as
𝑟𝑒𝑔𝑟𝑒𝑡 , defines the objective function of the learning process. 𝑅𝑒𝑔𝑟𝑒𝑡 is computed by comparing
the obtained reward with the reward that would have been obtained by following a single optimal
policy. Specifically, for each previous example, a set of reward values R𝑡 = {𝑟𝑡,1, ..., 𝑟𝑡,𝑁 } can be
calculated for all policies from the prediction results 𝜋𝑖 (x𝑡 ) and an 𝑎𝑡 . The objective function of the
learner is to minimize 𝑟𝑒𝑔𝑟𝑒𝑡

The objective function of the learner is to minimize the 𝑟𝑒𝑔𝑟𝑒𝑡 value

𝑟𝑒𝑔𝑟𝑒𝑡 = max
𝜋 ∈Π

𝑇∑
𝑡=1

𝑅𝑒𝑤𝑎𝑟𝑑 (𝑎𝑡 , 𝜋 (xt)) −
𝑇∑
𝑡=1

𝑅𝑒𝑤𝑎𝑟𝑑 (𝑎𝑡 , p𝑡 ), (1)

where the first term is the accumulative reward of the optimal performance policy that has the
maximum cumulative reward within the set of policies, and the second term is the total reward of
the learner up to the current time. The learning process updates the weights over the policy space
to minimize the observed 𝑟𝑒𝑔𝑟𝑒𝑡 using

𝑤𝑡+1,𝑖 = 𝑤𝑡,𝑖 + 𝑟𝑡,𝑖 (2)
and actions of the agent are determined by choosing the policy with the current highest weight,

𝜋∗𝑡 .
We also assume access to a dataset of previously observed 𝑁 users’ data Z = {𝜁1, ..., 𝜁𝑁 }. Each 𝜁

(also known as a trajectory) contains a set of the previously observed user selection 𝑎 and context 𝑥
information, 𝜁 = {(𝑎1, 𝑥1), ..., (𝑎𝑇 , 𝑥𝑇 )}. Using this dataset of previously observed selection-context
pairs, we can then learn a policy for predicting each user’s selections using supervised learning.
This process results in a total of 𝑁 policies. Given the current context, our proposed online-learning
algorithms weigh the 𝑁 policies to determine the current optimal policy to follow.
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ALGORITHM 1: Our algorithm for All Prediction setting to predict user selection. Π is set of all
estimators. 𝜙 is feature extractor for 𝑠 . 𝑇 is number of time steps. 𝑁 is total number of policies.
Input: 𝚷 = {𝜋1, 𝜋2, ...𝜋𝑛}
𝑡𝑜𝑡𝑎𝑙𝑅𝑒𝑤𝑎𝑟𝑑 = 0
𝑁 = |𝚷 |
w = {𝑤𝑖 = 0} for 𝑖 = 1, ..., 𝑁
for 𝑡 = 1, ...,𝑇 do

𝑠𝑡 ← 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑆𝑡𝑎𝑡𝑒𝑠 ()
x𝑡 = 𝜙 (𝑠𝑡 )
𝜋∗𝑡 ← 𝑎𝑟𝑔max𝜋𝑖 ∈Π 𝑤𝑖

p𝑡 = 𝜋∗𝑡 (x𝑡 )
𝑎𝑡 = 𝐺𝑒𝑡𝑈𝑠𝑒𝑟𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛()
𝑡𝑜𝑡𝑎𝑙𝑅𝑒𝑤𝑎𝑟𝑑 = 𝑡𝑜𝑡𝑎𝑙𝑅𝑒𝑤𝑎𝑟𝑑 + 𝑅𝑒𝑤𝑎𝑟𝑑 (𝑎𝑡 , p𝑡 )
for 𝑖 = 1, ..., 𝑁 do

p𝑖 = 𝜋𝑖 (x𝑡 )
𝑤𝑖 = 𝑤𝑖 + 𝑅𝑒𝑤𝑎𝑟𝑑 (𝑎𝑡 , p𝑖 )

end
end

In many applications, it is useful to maintain a probability distribution over the candidate actions
(i.e., preferred image filters to apply). A list of actions can be presented to the user according to
these probabilities in their preferred order.

3.2 Preference Modeling in All Prediction Setting
Algorithm 1 shows the procedure of the proposed algorithm for online user modeling in the All
Prediction setting. The algorithm repeatedly predicts probabilities of user selection on the basis
of a given context. It also updates weights until a number of time steps 𝑇 (𝑇 can be infinite). The
algorithm selects the temporal optimal policy with the maximum weight from a set of all policies.
This policy-selection process can also randomly sample a policy if more than two policies have the
same maximum weight (e.g., 𝑡 = 1).
This is a general algorithm that can be applied to many types of interactive systems. We thus

need to design the following components for making connections between interactive systems and
our online learner.

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑆𝑡𝑎𝑡𝑒 () and Feature Extraction 𝜙 (𝑠𝑡 ). 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑆𝑡𝑎𝑡𝑒 () is the first bridge, which connects
interactive systems and our online learner. The learner receives a current state 𝑠𝑡 from interactive
systems. This can be represented as sensor data and images. The learner then extracts a feature
vector x𝑡 from context information 𝑠𝑡 by using a feature extractor𝜙 . This is similar to pre-processing
for traditional supervised learning.

𝐺𝑒𝑡𝑈𝑠𝑒𝑟𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(). This function is the second bridge, which connects interactive systems and
target users. The learner sends a prediction result p𝑡 to an interactive system. Use of prediction
results is the most important design component. We present a concrete interaction scenario and
demonstrate a design example of presenting prediction results in Section 5. Users can refer to a
form of presentation to make their decision. After user selection, the learner then receives an action
label of user selection 𝑎𝑡 .
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Reward Function 𝑅𝑒𝑤𝑎𝑟𝑑 (𝑎𝑡 , p𝑡 ). On the basis of a set of prediction results and user selection, our
learner computes reward values𝑅𝑒𝑤𝑎𝑟𝑑 (𝑎𝑡 , p𝑡 ) to update the cumulative reward and a set of weights
w. Designs of reward functions are important because they affect the prediction performance of our
learner. We also demonstrate that different designs of reward functions lead to different prediction
performances in Section 7.

4 PREFERENCE MODELING IN LIMITED PREDICTION SETTING
We also consider themore challenging setting inwhich the learner is not able to access all predictions
from a set of policies. This setting easily occurs when a set contains a large amount of policies or
computing resources are limited (e.g., in mobile computing). In such a case, the learner is allowed
to obtain a limited number of predictions in each 𝑡 . With this setting, the learner aims to prevent
prediction accuracy.

4.1 Formulation
Similar to the previous setting, an online learner aims to learn a user preference model and estimate
user selection on the basis of predictions of policies from other user data. The main difference from
the previous setting is that an online learner is able to access𝑀 predictions from a set of 𝑁 policies
(𝑀 is constant) in a 𝑡 . The number of predictions is defined between 1 < 𝑀 < 𝑁 . An online learner
can obtain𝑀 predictions from any𝑀 policies P𝑡 = {p1, ..., p𝑀 }.
The online learner aims to learn a preference model for a target user by using a set of policies

from other user data. In each 𝑡 , the online learner predicts probabilities of user selection then
obtains actual user selection to update the preference models. We used the same objective function
as with the previous setting (Equation 1)

For this problem, we take an approach to learn a combination of𝑀 policies from a set for a given
target user. Our learner pulls and uses prediction results from 𝑀 policies then updates the weights
for the selected policies with the actual 𝑎𝑡 at each 𝑡 . The learner predicts the probabilities of user
selection q𝑡 by computing the exponentially weighted average of the selected policies’ weights as
Equation 3

q𝑡 =
∑
𝑖∈I𝑡

𝑒𝑤𝑖∑
𝑗 ∈I𝑡 𝑒

𝑤𝑗
pi (3)

Let I𝑡 ⊆ {1, ..., 𝑁 } (|I𝑡 | = 𝑀) be the indexes of selected𝑀 policies, w = {𝑤1, ...,𝑤𝑁 } be weights
of policies in a set, and p𝑖 be a prediction result from the 𝑖−th policy.

Our assumption is that the combination of a small set of multiple policies can effectively model
user preference rather than using a policy from a small set. The exponential weighted average over
a subset of policies combines predictions and initiatively uses weighted policies. A drawback is
that predictions from less weighted policies are used for recommendation when 𝑀 is not small.
To confirm this assumption empirically, We evaluated the performance of our algorithm for the
Limited Prediction setting (Section 7.4).
The manner of selecting 𝑀 policies at each 𝑡 is important to quickly learn a user preference

model for the sequential learning setting. Unlike the first setting, our online learner is not allowed
to access all prediction results in a 𝑡 . To address this problem, we refer to online-learning algorithms
for the multi-armed bandit problem in which the problem setting allows an online learner to access
an arm in each 𝑡 . Similar to the All Prediction settings, bandit algorithms find the optimal policy to
reduce regret (e.g., Equation 1).
Several bandit algorithms, such as Upper Confidence Bound (UCB) and Kullback-Leibler UCB

(KL-UCB) compute scores of arms to choose one in each 𝑡 . This score is designed to address “the
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ALGORITHM 2: Our algorithm for Limited Prediction setting to predict user selection. Π is set of
all estimators, and 𝜙 is feature extractor for 𝑠 . 𝑇 is number of 𝑡s, 𝑁 is total number of policies, and𝑀 is
number of predictions.
Input:𝑀, 𝚷 = {𝜋1, 𝜋2, ...𝜋𝑛}
𝑡𝑜𝑡𝑎𝑙𝑅𝑒𝑤𝑎𝑟𝑑 = 0
𝑁 = |𝚷 |
w = {𝑤𝑖 = 0} for 𝑖 = 1, ..., 𝑁
for 𝑡 = 1, ...,𝑇 do

𝑠𝑡 ← 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑆𝑡𝑎𝑡𝑒𝑠 ()
x𝑡 = 𝜙 (𝑠𝑡 )
I𝑡 ← 𝑆𝑒𝑙𝑒𝑐𝑡𝐺𝑜𝑜𝑑𝑃𝑜𝑙𝑖𝑐𝑦𝐼𝑛𝑑𝑖𝑐𝑒𝑠 (𝑡)
P𝑡 = {p𝑖 = 𝜋𝑖 (x𝑡 )} for 𝑖 ∈ I𝑡
q𝑡 =

∑
𝑖∈I𝑡

𝑒𝑤𝑖∑
𝑗∈I𝑡 𝑒

𝑤𝑗 pi

𝑎𝑡 = 𝐺𝑒𝑡𝑈𝑠𝑒𝑟𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛()
𝑡𝑜𝑡𝑎𝑙𝑅𝑒𝑤𝑎𝑟𝑑 = 𝑡𝑜𝑡𝑎𝑙𝑅𝑒𝑤𝑎𝑟𝑑 + 𝑅𝑒𝑤𝑎𝑟𝑑 (𝑎𝑡 , q𝑡 )
for 𝑖 ∈ 𝐼𝑡 do

𝑟𝑖 = 𝑅𝑒𝑤𝑎𝑟𝑑 (𝑎𝑡 , q𝑖 )
𝑈𝑝𝑑𝑎𝑡𝑒 (𝑖, 𝑟𝑖 )
𝑤𝑖 = 𝑤𝑖 + 𝑟𝑖

end
end

exploration-exploitation trade-off dilemma,” in which the use of current knowledge and search for
better arms is balanced. A bandit algorithm usually pulls and uses an arm with the best score in
each 𝑡 .
Our algorithm for the Limited Prediction setting follows the approach of bandit algorithms to

choose𝑀 policies. Our algorithm computes scores for all policies then uses policies with the top
𝑀 scores. We carried out implementations of two variants of this algorithm; one with Thompson
Sampling algorithm and the other with the KL-UCB algorithm.

4.2 Preference Modeling in Limited Advice Setting
Algorithm 2 shows the proposed algorithm for the Limited Prediction setting. The main differences
with Algorithm 1 is that Algorithm 2 obtains indices of𝑀 policies I𝑡 by 𝑆𝑒𝑙𝑒𝑐𝑡𝐺𝑜𝑜𝑑𝑃𝑜𝑙𝑖𝑐𝑦 (𝑡) and
computes exponentially weighted probabilities of user selection q𝑡 . The online learner then updates
the scores and weights of the selected policies.
A bandit algorithm is implemented in 𝑆𝑒𝑙𝑒𝑐𝑡𝐺𝑜𝑜𝑑𝑃𝑜𝑙𝑖𝑐𝑦 (𝑡) and 𝑈𝑝𝑑𝑎𝑡𝑒 (𝑖, 𝑟𝑖 ) functions. The

𝑆𝑒𝑙𝑒𝑐𝑡𝐺𝑜𝑜𝑑𝑃𝑜𝑙𝑖𝑐𝑦 (𝑡) function computes all scores of policies based on parameters on the bandit
algorithm and returns indices of selected polices in a 𝑡 . The𝑈𝑝𝑑𝑎𝑡𝑒 (𝑖, 𝑟𝑖 ) function receives an index
and reward of a policy and updates the parameters for the bandit algorithm.

4.3 Implementation
To investigate efficient arm scores from bandit algorithms, we implemented two variants of our
algorithm, one with Thompson Sampling algorithm and the other with the KL-UCB algorithm.
Each variant has similar processes for selecting policies but different parameters to compute policy
scores.
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ALGORITHM3: Implementation of our limited prediction algorithmwith Thompson Sampling algorithm.
𝑁 is total number of policies, and 𝑀 is number of predictions. 𝛼 and 𝛽 are prior parameters of a Beta
distribution, and 𝐵𝑒𝑡𝑎(𝑎, 𝑏) is function to sample value from Beta distribution
Input: 𝑁 . 𝑀. 𝛼. 𝛽. A = {𝑎𝑖 = 0} for 𝑖 = 1, ..., 𝑁 . B = {𝑏𝑖 = 0} for 𝑖 = 1, ..., 𝑁
Function SelectGoodPolicies(𝑡):

𝜽 ← {𝐵𝑒𝑡𝑎(𝑎𝑖 + 𝛼,𝑏𝑖 + 𝛽) } for 𝑖 = 1, ..., 𝑁
I← 𝑎𝑟𝑔𝑠𝑜𝑟𝑡 (𝜽 )
return I [𝑁 −𝑀 : 𝑁 ]

Function Update(𝑖, 𝑟):
𝑎𝑖 = 𝑎𝑖 + 𝑟
𝑏𝑖 = 𝑏𝑖 + 1 − 𝑟

Thompson Sampling Implementation. Thompson Sampling is a heuristic algorithm to address the
exploration-exploitation trade-off such as the bandit problem [30]. The concept of Thompson
Sampling is to randomly draw an arm on the basis of its probability of being optimal in a 𝑡 . A
recent study conducted empirical evaluations on simulated and real data and found that Thompson
Sampling is highly competitive with UCB, which has strong theoretical guarantees on how regret
can be proved [9]. An implementation of Thompson Sampling for the Bernoulli bandit algorithm
draws a Beta distribution for a score of the 𝑖-th arm 𝜃𝑖 as Equation 4.

𝜃𝑖 ← 𝐵𝑒𝑡𝑎(𝑎𝑖 + 𝛼,𝑏𝑖 + 𝛽) (4)
Let 𝑎𝑖 and 𝑏𝑖 be parameters of the 𝑖-th arm, which are success and failure counters, respectively.

The notations 𝛼 and 𝛽 are constant values of prior parameters for a Beta distribution. The Thompson
Sampling algorithm selects an arm with the maximum score at a 𝑡 (see [9] for more details).

Algorithm 3 shows the Thompson Sampling implementation of the proposed limited-prediction
algorithm. In the 𝑆𝑒𝑙𝑒𝑐𝑡𝐺𝑜𝑜𝑑𝑃𝑜𝑙𝑖𝑐𝑦 (𝑡) function, our algorithm draws scores for all policies then
returns indices of top 𝑀 scores. Since we consider a continuous reward value 𝑟 ∈ [0, 1], the
parameters of the 𝑖-th arm 𝑎𝑖 and 𝑏𝑖 are updated as 𝑎𝑖 + 𝑟 and 𝑏𝑖 + 1 − 𝑟 , respectively, in the
𝑈𝑝𝑑𝑎𝑡𝑒 (𝑖, 𝑟 ) function.

KL–UCB Implementation. The KL-UCB algorithm is an online horizon-free index algorithm for
stochastic bandit problems [15]. This algorithm uses the Bernoulli KL divergence 𝐾𝐿(𝑝, 𝑞) =

𝑝𝑙𝑜𝑔
𝑝

𝑞
+ (1− 𝑝)𝑙𝑜𝑔 1−𝑝

1−𝑞 for (𝑝, 𝑞) ∈ Θ2 to compute a score for each arm 𝑢𝑖 in a 𝑡 by using Equation 5.

𝑢𝑖 ← max{𝑞 ∈ Φ : 𝑐𝑖𝐾𝐿(
𝑑𝑖

𝑐𝑖
, 𝑞) ≥ log(𝑡) + 𝛼 log(𝑡)} (5)

Let 𝑐𝑖 and 𝑑𝑖 be numbers of use and success for the 𝑖-th arm, 𝚽 be a value range [0, 1], and 𝛼 be
a constant value. This equation can be computed using Newton iterations for 𝑞 ∈ [0, 1] (see [15]
for more details).

Algorithm 4 shows the KL-UCB implementation of the proposed limited prediction algorithm. In
the 𝑆𝑒𝑙𝑒𝑐𝑡𝐺𝑜𝑜𝑑𝑃𝑜𝑙𝑖𝑐𝑦 (𝑡) function, our algorithm computes scores for all policies by using Equation
5 then returns indices of top𝑀 scores. Since we consider a continuous reward value 𝑟 ∈ [0, 1], the
parameter 𝑑𝑖 of the 𝑖-th arm is updated as 𝑑𝑖 + 𝑟 in the𝑈𝑝𝑑𝑎𝑡𝑒 (𝑖, 𝑟 ) function.

5 APPLICATION OF IMAGE FILTER SELECTION FOR PHOTO-SHARING SERVICE
We applied our user-preference modeling to our image-filter-selection application as a scenario with
complexity of context information and user preference. This application imitates photo-sharing
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ALGORITHM 4: Implementation of our limited prediction algorithm with KL-UCB algorithm. 𝛼 is
constant value, and 𝐾𝐿(𝑝, 𝑞) is function for computing KL divergence
Input: 𝑁 . 𝑀. C = {𝑐𝑖 = 0} for 𝑖 = 1, ..., 𝑁 . D = {𝑑𝑖 = 0} for 𝑖 = 1, ..., 𝑁 . 𝚽 = [0, 1]
Function SelectGoodPolicies(𝑡):

U← {max{𝑞 ∈ Φ : 𝑐𝑖𝐾𝐿( 𝑑𝑖𝑐𝑖 , 𝑞) ≥ log(𝑡) + 𝛼 log(𝑡)}} for 𝑖 = 1, ..., 𝑁
I← 𝑎𝑟𝑔𝑠𝑜𝑟𝑡 (U)
return I [𝑁 −𝑀 : 𝑁 ]

Function Update(𝑖, 𝑟):
𝑐𝑖+ = 1
𝑑𝑖+ = 𝑟

SNSs (e.g., Instagram) with which users select a specific image filter for a given photo. We believe
user selections change depending on the content of photos and personal preference. We also believe
there is no clear goal and it is difficult to define the best filter for everyone. However, this scenario
is very common for many users of photo-sharing SNSs.

We are interested in how accurately the proposed algorithms are able to predict user selections
and how filter recommendation affects user selection and behavior. We thus built a prototype
interface as a GUI of our image-filter-selection application. The interface features a special function
of filter suggestion powered by our online user-preference modeling. With this interface, users are
asked to repeatedly select a filter from predefined filters for a given image.

User Interface. Figure 1 shows our GUI interface for image-filter selection. The interface contains
several GUI components, i.e., image preview, filter view with the top-3 recommendations, and
image sequence buttons (Next and Back). The interface has the original image and eight image
filters on the candidate filter view. Users can select a filter by clicking on it with a mouse. The
image preview then shows an image with the selected filter applied. Users can freely compare
filters to make a selection.

Presentation of Selection Prediction as Suggestions. The interface can highlight three filters with
top-3 probability on the filter view, as shown in Figure 1. We make a ranking list of filters on the
basis of probability values of prediction results p𝑡 in each 𝑡 . We assign red, orange, and green for
the top-1, -2, and -3 filters, respectively. Users can see highlighted filters as suggestions based on
target-user preference.

Use of Other Users’ Filter Selection Histories. The application uses selection histories of other
(previous) users that are pairs of images and selected filters. The application has a feature extractor
to generate feature vectors of images. It also uses supervised learning algorithms to generate a policy
from selection histories of a user and has multiple policies in a set. We describe implementation
details in Section 7.

6 DATA COLLECTION
We created a dataset of image-filter selections for our algorithm evaluations and a user study for
the image-filter-selection application. We recruited 16 university students (Female: 3, and Male:
13; average age was 25 (SD: 2.55)). Seven of the participants had never selected image filters for
photo-sharing SNSs. Due to the use of supervised learning for policy generation, a small amount of
selection data (training data) makes policies with poor performance. We thus decided to collect 300
selections from each participant to learn a policy that can reflect the participant’s preference. We
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Fig. 3. Our user interface contains several GUI components, i.e., image preview,
filter view with top-3 suggestions, and image sequence buttons (Next and Back).
Interface displays original image (no filter) and 8 image filters.

believe that 300 selections for image filters is a practical number for active users of actual SNSs
(e.g., Instagram).

The participants followed our data-collection process for the dataset. First, they filled out a
questionnaire with information such as age, gender, and experience of image-filter selection. They
then started selecting image filters for 300 images for which 9 candidates were shown: the original
image and 8 filtered images. We asked them to select the candidate for a given image to upload the
(original or filtered) images to their accounts on photo-sharing SNSs. During the data collection,
participants were allowed to rest anytime if they felt tired. Finally, we obtained 300 user selections
of image filters from all 16 participants (4800 pairs of images and filters) for the dataset. Note that
the application did not show any recommendations during the data-collection process.
We used the Open Image Dataset1, which is a large-scale image dataset that contains over ten

million images for computer vision competitions. We selected this dataset to preserve diverse and
adequate images for the data collection. We thus randomly sampled 300 images from the dataset
for each participant, i.e., each participant selected filters for 300 different images.

We designed a set of eight original image filters, as shown in Figure 3. We used nConvert2, which
is a command-line batch-image processor to create the eight image filters. To reproduce the filters,
we show command-line parameters in Table 1. We designed the image filters to be common and
useful to beautify pictures on the basis of professional advice. Users can freely compare filters
to select the original image or a filtered image as an action. An action label (user selection) 𝑎𝑡 is
assigned, as shown in the second column in Table 1.

Figure 4 shows the filter-selection probabilities of the 16 participants from the dataset. Although
ten participants frequently selected filter label 1, there were several types of preference distributions
among the participant. The average total selection time of each participant was 64.1 minutes (SD:
25.3) including rests.

1Open Images Dataset: https://storage.googleapis.com/openimages/web/index.html
2NConvert: Command Line Batch utility for images https://www.xnview.com/en/nconvert/
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Table 1. Filter action labels and parameters to reproduce our eight filters with the
nConvert software 2 for our dataset

Original Filter1 Filter2 Filter3 Filter4 Filter5 Filter6 Filter7 Filter8

action label 𝑎𝑡 0 1 2 3 4 5 6 7 8

Filter params.
Brightness – -10 40 – – – – 10 -25
Contrast – 25 45 Auto Auto – – 25 25
Gamma – 1.35 0.8 – – – – 1.1 1.1
Gamma Sat. – – – 2.25 3.0 1.3 1.3 – –
Hue Rotation – – – 4 -4 – – – –
Color temp. – – – – – 35,0,0 35,35,0 – –
Grayscale – – – – – – – Yes –
Sepia – – – – – – – – Yes

Fig. 4. Selection distributions of 16 participants for our dataset
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7 ALGORITHM EVALUATIONS
Using the above dataset, we conducted three evaluations for the proposed algorithms. We 1)
compared our all-prediction algorithm with traditional supervised learning and bandit algorithms,
2) investigated the impact of the number of policies in a set, and 3) compared our limited-prediction
algorithm with state-of-the-art algorithms.

7.1 Evaluation Settings
We designed our evaluation settings to apply the proposed algorithms to our image-filter-selection
application. We decided a way for generating a set of policies and a reward function to sequentially
update the proposed algorithms.

7.1.1 Context Features x𝑡 . The performance of the proposed algorithms is significantly affected
by the performance of supervised learning algorithms that learn existing users’ preferences from
selection data to generate a set of policies. Therefore, the choice of context features x𝑡 , and
supervised learning algorithms were important for our evaluations. In computer vision, recent
developments in deep learning network (DNN) techniques outperformed other hand-crafted image
features regarding prediction [19]. Yosinski et al.showed that middle-layers of trained convolutional
NNs can be used to extract feature vectors of images for learning other datasets [33]. In artwork
recommendation, Messina et al., revealed that image features from DNN embedding resulted
in state-of-the-art prediction performance compared to hand-crafted image features (e.g., color
histogram) [25]. Therefore, we selected DNN embedding to extract context features from images.
More specifically, we used the ILSVRC VGG-16 FC7 layer [29] as 4096-dimensional deep learning
features. We then compressed the 4096-dimensional features to 256-dimensional features using
principal component analysis for all image data. We used the Random Forest classifier to generate
policies for all evaluation conditions in the three evaluations.

7.1.2 Reward Function 𝑅𝑒𝑤𝑎𝑟𝑑 (𝑎𝑡 , p𝑡 ). The proposed algorithms use a reward function to sequen-
tially update an online learner in each 𝑡 to model target user preferences. The reward function
should be properly designed for a specific application. In this evaluation, we focused on our image-
filter-selection application in which the interface visualizes the top-3 recommended filters for a
given image. In this case, the top-3 recommendations are expected to contain the actually selected
filter. Therefore, we used the reward function that can respectively provide rewards to accurately
predicted policies and policies in which the top-3 predictions contain the correct filter.

Algorithm 5 shows the reward function for our image-filter-selection application. This function
has two predefined reward parameters for top-1 𝑅𝑡𝑜𝑝1 = 1 and top-3 𝑅𝑡𝑜𝑝3 ∈ [0, 1) accuracy
(𝑅𝑡𝑜𝑝1 > 𝑅𝑡𝑜𝑝3). In each 𝑡 , accurately predicted policies receive 𝑅𝑡𝑜𝑝1, and policies in which the
top-3 predictions contain the correct filter receive 𝑅𝑡𝑜𝑝3. Otherwise, the reward function gives other
policies no reward, i.e., 0. In Evaluation 1, we evaluated the trade-off of top-1 and top-3 accuracies
by changing the 𝑅𝑡𝑜𝑝3 parameter. Although we considered top-3 accuracy for the reward function,
the participants did not see any recommendations in their filter selections.

7.1.3 Evaluation Measures. In our evaluations, we measured top-1 and top-3 prediction accuracies
(chance rate: 0.11 and 0.33, respectively) of filter selection. We also measured the mean reciprocal
rank (MRR), which is a common metric for evaluating recommendation systems (higher is better).
In Evaluation 1, we also compared regret values (Equation 1: lower is better) under conditions
that show the difference in reward values with optimal policies. In Evaluation 3 for the Limited
Prediction setting, we determined how a limited number of predictions affect processing times.
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ALGORITHM 5: Reward Function for Image Filter Selection
Input: Reward values for top-1 𝑅𝑡𝑜𝑝1 ∈ [0, 1] and top-3 𝑅𝑡𝑜𝑝3 ∈ [0, 1) accuracy as predefined

environmental parameters (𝑅𝑡𝑜𝑝1 > 𝑅𝑡𝑜𝑝3)
Function Reward(𝑎𝑡 , p):

ranking = 𝑎𝑟𝑔𝑠𝑜𝑟𝑡_𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔_𝑜𝑟𝑑𝑒𝑟 (p)
if 𝑎𝑡 = 𝑟𝑎𝑛𝑘𝑖𝑛𝑔1 then

return 𝑅𝑡𝑜𝑝1
else if 𝑎𝑡 = 𝑟𝑎𝑛𝑘𝑖𝑛𝑔2 𝑜𝑟 𝑎𝑡 = 𝑟𝑎𝑛𝑘𝑖𝑛𝑔3 then

return 𝑅𝑡𝑜𝑝3
return 0

7.2 Evaluation 1: Prediction Performance in All Prediction Setting
We compared the proposed algorithm for the All Prediction setting with traditional supervised
learning and bandit algorithms. The main purposes of this evaluation was evaluating 1) whether
the proposed all-prediction algorithm can achieve better prediction performance over baselines,
and 2) the effect of the difference of the reward value 𝑅𝑡𝑜𝑝3 to determine the tradeoff of top-1 and
top-3 accuracies. We conducted this evaluation under a variety of 𝑅𝑡𝑜𝑝3 that changed from 0 to 1 in
steps of 0.01.
We conducted 16-fold cross-validation, i.e., 1 selection set for test data and the remaining 15

selection sets for train data. We sequentially changed and evaluated each test dataset for all of
conditions. Since each test dataset has 300 filter selections, we tested the algorithms with 𝑇 = 300.
We compared the following conditions and an optimal condition:

Proposed: Our method for the All Prediction setting. We applied each user selection dataset (15
users) to the Random Forest classifier to generate a set of policies. Our online learner is allowed to
access all prediction results in the set and update all policy weights in each 𝑡 .

Baseline 1: bandit approach UCB. We implemented the UCB algorithm as a bandit baseline [4].
The reason we chose this is that it is deterministic and has a theoretically guaranteed regret bound.
Although there are several variations of the UCB algorithm (e.g., KL-UCB), it is easy to understand
the scheme for selecting arms. The main difference between the proposed all-prediction algorithm
and the bandit UCB algorithm is the number of observations and updates for policies. The UCB
algorithm is allowed to access and update only one policy in each 𝑡 . The UCB algorithm has the
same set of policies as the proposed algorithm.

Baseline 2: all-in-one policy 𝜋𝑎𝑙𝑙 (traditional supervised learning). We merged all user selection
datasets (15 users) into an all-in-one training dataset (4500 pairs). We also applied the data to
the supervised learning algorithm to make an all-in-one policy. Based on the findings from our
preliminary study, we used the Random Forest classifier to learn the all-in-one policy (the same as
with the proposed all-prediction algorithm). Note that this baseline does not change the prediction
results if the reward function changes.

Optimal policies 𝜋∗. For regret analysis, we computed the optimal policy for each test dataset.
We built 15 policies, as with the proposed all-prediction algorithm. We chose the optimal policy
with the maximum rewards from 15 policies. Note that the optimal policy can be revealed after 𝑇
time steps.
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Table 2. Results of prediction performance for our image-filter-selection appli-
cation: we measured top-1 accuracy, top-3 accuracy, MRR, and average regret
values.

Baseline 1 UCB Baseline 2 𝜋𝑎𝑙𝑙 Proposed Optimal 𝜋∗

Reward parameter 𝑅𝑡𝑜𝑝3 = 0.0
Top-1 Accuracy 0.31 (SD:0.07) 0.23 (SD:0.11) 0.37 (SD:0.09) 0.39 (SD:0.08)
Top-3 Accuracy 0.62 (SD:0.09) 0.71 (SD:0.13) 0.64 (SD:0.11) 0.66 (SD:0.12)
MRR 0.51 (SD:0.06) 0.48 (SD:0.07) 0.55 (SD:0.07) 0.57 (SD:0.08)
Average Regret 24.25 (SD:13.20) 48.25 (SD:45.33) 5.69 (SD:3.82) –

Reward parameter 𝑅𝑡𝑜𝑝3 = 0.5
Top-1 Accuracy 0.28 (SD:0.05) 0.23 (SD:0.11) 0.35 (SD:0.09) 0.36 (SD:0.09)
Top-3 Accuracy 0.65 (SD:0.10) 0.71 (SD:0.13) 0.73 (SD:0.12) 0.74 (SD:0.11)
MRR 0.50 (SD:0.05) 0.48 (SD:0.07) 0.56 (SD:0.07) 0.57 (SD:0.07)
Average Regret 26.56 (SD:9.94) 25.63 (SD:20.64) 4.13 (SD:2.34) –

Results of Evaluation 1
Table 2 shows the results of Evaluation 1. The table also includes results of prediction performance
on different reward values 𝑅𝑡𝑜𝑝3 = 0, 0.5. The table shows top-1 accuracy, top-3 accuracy, MRR, as
well as regret values for optimal policy 𝜋∗. For top-1 accuracy and MRR, the proposed all-prediction
algorithm outperformed the baselines. In top-3 accuracy, although baseline 2 (Supervised) provided
better results with 𝑅𝑡𝑜𝑝3 = 0, the proposed all-prediction algorithm outperformed the others with
𝑅𝑡𝑜𝑝3 = 0.5. These results indicate that our algorithm is able to change prediction performance by
designing reward functions. The proposed all-prediction algorithm also had smaller regrets than
the baselines.

Figure 5 (A) show more detailed results of prediction performance with top-3 reward parameters
𝑅𝑡𝑜𝑝3 in steps of 0.01. The results indicate that the tradeoff of 𝑅𝑡𝑜𝑝3 ∈ [0, 1) affected top-1 and top-3
accuracies. The proposed all-prediction algorithm outperformed baseline 2 (Supervised) when the
top-3 reward value was higher than 0.28. In contrast, our algorithm always performed best in terms
of top-1 accuracy and MRR. The results of MRR were stable under various reward parameters 𝑅𝑡𝑜𝑝3.

As shown in the left graphs of 5 (B) and (C), the proposed all-prediction algorithm quickly found
and tracked optimal policies when the reward parameters were 0.0 or 0.5. In contrast, the UCB
algorithm as the bandit baseline increased regret values over time. The center and right graphs of 5
(B) and (C) show that time changes in top-1 accuracy and MRR.

7.3 Evaluation 2: Impact of the Number of Policies in Set
We investigated the impact of increasing the number of policies in a set. We assumed that the
proposed all-prediction algorithm can increase prediction performance along with increasing the
number of policies. To this end, we evaluated the proposed all-prediction algorithm by changing
the number of policies in a set. We conducted 𝑘-fold cross-validations (2 ≤ 𝑘 ≤ 16) for all possible
combinations of policies. We selected 𝑘 user selection data from a dataset then conducted 𝑘-fold
cross-validation with the selected 𝑘 data. We applied this to all possible combinations 16𝐶𝑘 . We
determined the averages of results from combinations for each 𝑘-fold cross-validation.We compared
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Fig. 5. (A) Results of regret and prediction performance with top-3 reward 𝑅𝑡𝑜𝑝3 ∈
[0, 1). (B) and (C) Evaluation results in each 𝑡 when reward values were 0.0 and
0.5, respectively.

the proposed all-prediction algorithm with the UCB algorithm as a baseline bandit algorithm. We
evaluated two rewards values; 𝑅𝑡𝑜𝑝3 = 0, 0.5.

Results of Evaluation 2
Figure 6 shows the results of Evaluation 2. The graphs show that the results of the optimal policy
and the proposed all-prediction algorithm increased along with the increase in the number of
policies in most cases. Our algorithm could track the optimal policy, even when the number of
policies increased. Although the results of top-3 accuracy with 𝑅𝑡𝑜𝑝3 did not increase, this setting
only took into account top-1 accuracy in the reward function. The results of the UCB algorithm did
not increase along with the number of policies.

7.4 Evaluation 3: Prediction Performance in Limited Prediction Setting
We evaluated the other proposed algorithm with two variations for the Limited Prediction setting.
We assumed that our algorithm is still able to exhibit reasonable prediction accuracy unless it
cannot access all the predictions from a set of policies in a 𝑡 . In this evaluation, we conducted16-fold
cross-validation, as in Evaluation 1, but changed the number of predictions 𝑀 from 1 to 15. We
used two reward values 𝑅𝑡𝑜𝑝3 = 0.0 and 𝑅𝑡𝑜𝑝3 = 0.5. In addition to the performance metrics, we
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Fig. 6. Evaluation 1 results: we confirmed that the results of optimal policy and pro-
posed all-prediction algorithm increase along with increasing number of policies
in set

also measured processing times under different𝑀 predictions. For completeness, we also report on
the run-time for each algorithm on an Intel Core i7 6700K with 32 GB memory.
We compared our limited-prediction algorithm with state-of-the-art algorithms for similar

settings called multi-armed bandit algorithms with additional observation [16, 28, 34]. The main
difference between our algorithm and these competitive algorithms is that our algorithm uses an
exponentially weighted average of𝑀 predictions, but the competitive algorithms use an arm and
update scores of𝑀 − 1 arms. We compared the algorithms under the following conditions (note
that all conditions had the same set of 15 policies):

Proposed 1 (Thompson Sampling): Our method with the Thompson Sampling implementation for
limited advice setting. We applied the Thompson Sampling algorithm (Algorithm 3) to our algorithm
(Algorithm 2). Our online learner is allowed to select𝑀 predictions in the set of policies based on
bandit scores and update weights and bandit scores of the selected policies in each 𝑡 .

Proposed 2 (KL-UCB): Our method with the KL-UCB implementation for limited advice setting. We
applied the KL-UCB algorithm (Algorithm 4) to our original algorithm (Algorithm 2). Our online
learner selects 𝑀 prediction results from the set of policies and updates the weights and bandit
scores of the selected policies.

Competitive method 1 [28] (Limited Advice): multi-armed bandit with limited advice. We imple-
mented an algorithm that selects an arm based on estimated loss values of policies and uses its
prediction result [28]. The algorithm also samples 𝑀 − 1 additional policies uniformly without
replacement then updates loss values to the selected𝑀 policies (See more details of this algorithm
in [28]).

Competitive method 2 [34] (KL-UCB-AO): modified version of multi-armed bandit with additional
observations. The original multi-arm bandit algorithm is able to change the number of additional
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observations for updating bandit scores of arms based on observation costs and budgets, i.e.,𝑀 can
be different at each 𝑡 . To fit to our setting, we modified this algorithm to take constant𝑀 policies
at a 𝑡 . The modified algorithm selects a policy with the highest KL-UCB scores from a set and uses
its prediction results. The algorithm also selects additional𝑀 − 1 policies based on KL-UCB scores
then updates the KL-UCB scores of the selected𝑀 policies.

Results of Evaluation 3
Figures 7 (A) and (B) show the results in the Limited Prediction setting. Overall, our algorithm
with the KL-UCB algorithm exhibited better top-1 accuracy than the competitive algorithms when
there are few limited predictions 𝑀 (especially 1 < 𝑀 < 6). We empirically confirmed that few
combinations of𝑀 policies could learn personal preference models over using a policy. When𝑀 is
close to 𝑁 , the performance of the proposed limited-prediction algorithm was similar to that of the
competitive algorithms in the dataset.
Figure 7 shows the results of processing times for all algorithms. The left graph shows the

processing times of policy selection without prediction times of𝑀 policies. The proposed limited-
prediction algorithm with KL-UCB algorithm and competitive method 2 (KL-UCB-AO) were slower
than competitive method 1 and our algorithm with the Thompson Sampling algorithm because
each computation of a KL-UCB score requires solving an optimization problem. The right graph
shows the overall processing times for all algorithms. Due to the various times of predictions from
policies, we added𝑀 times of the fixed average prediction time (9.35 ms) to the policy selection
time. We confirmed that the prediction times of each policy affected to overall processing times
rather than selecting𝑀 policies from a set of 𝑁 policies.

8 USER STUDY
We then conducted a pilot user study in which participants selected image filters for given images
using our interface with visualized recommendations. To the best of our knowledge, this study is
the first to investigate how visualizing top-N recommendation affects user-selection behavior in
image-filter applications. Therefore, the main purpose of this user study was to understand the
key effects of visualization. More specifically, we investigated how visualizing recommendation
affects participants’ filter selection compared with no recommendation (Task 1), and whether the
recommendation could reflect participants’ personal preference (Task 2). We expected that the
recommendation based on the proposed algorithms reflects target user preferences and helps in
selecting image filters.
We recruited 16 university students as participants of our user study (Female: 5, and Male: 11;

average age 24.1 (SD: 0.96)). They had diverse experiences with image-based SNSs (9 participants
had experience of uploading filtered images to their SNS accounts).
We used the proposed algorithm for the All Prediction setting to ensure reasonable prediction

accuracy for presenting recommendations. We also used selection data and filter sets of our dataset
to use various images from the Open Image Dataset1. Regarding the reward function, we fixed
reward values to 𝑅𝑡𝑜𝑝1 = 1 and 𝑅𝑡𝑜𝑝3 = 0.

8.1 Tasks and Procedure
Task 1. We designed two tasks for this user study. The first task was designed to determine the

effectiveness of the top-3 filter recommendations from our all-prediction algorithm. Each participant
selected image filters for 100 given images that were sampled from the Open Image Dataset2. We
investigated under two conditions, one with our all-prediction algorithm with recommendation
(Proposed condition) and one without recommendation (None condition). With the None condition,
participants did not receive any recommendations from our algorithm. As mentioned above, this is
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Fig. 7. Results of Evaluation 3 in Limited Prediction setting. Our limited-prediction
algorithm with KL-UCB algorithm performed better than competitive methods
when𝑀 limited predictions𝑀 was small. We also confirmed that prediction times
of each policies affected the overall processing times rather than selecting 𝑀
policies.

the first study to determine whether visualizing recommendations helps in filter selection. We thus
thought the None condition would be an appropriate baseline rather than other recommendation
conditions (e.g., bandit-based recommendation).
Before the first task, participants used both conditions to select filters for less than ten images.

We asked the participants to select a suitable filter from nine candidates for a given image to
upload the (original or filtered) images to their accounts of photo sharing SNSs. During the task,
participants selected 50 image filters with the Proposed condition, and remaining 50 images for
the None condition. To avoid effect of learning, the Proposed and None conditions were shown
alternatively for each 100 filter selections. Our all-prediction algorithm sequentially updated the
weights of policies based on user selections in both None and Proposed conditions.

Task 2. We designed the second task to determine whether the proposed all-prediction algorithm
can reflect target-user preferences of filter selections compared to random suggestions. After Task
1, participants worked on task 2 with updated weights of policies (i.e., we used learned models from
Task 1). We showed two highlighted filters in red (top-1 recommendation) for given images on the
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GUI interface. One of the recommended filters was from the top-1 probability of a prediction result,
and the other was randomly selected from remaining candidates. We asked participants to select a
candidate from the two recommended filters based on their preference for 50 images. After task 2,
participants then filled out a questionnaire.

8.2 Evaluation Measures
We used several quantitative metrics for the Proposed and None conditions. In task 1, we used
median selection times andmedian number of filter comparisons for 50 images under each condition.
We also measured reference and selection ratios of the top-1 recommendation to determine whether
participants used the recommended information for their selection. The reference ratio is the
percentage of participants who clicked the (referred) top-1 recommendation at least once. We
also determined the first-selection ratio of the top-1 recommendation, which is the percentage
of whether participants started to review the top-1 recommendation. Since the interface initially
shows original images, we did not change reference ratio when the original images had the top-1
recommendation. The selection ratio is the percentage of participants who selected the top-1
recommendation. We computed filter selection histograms to determine the similarities of selection
distributions under both conditions. Wemeasured the similarities of histograms from each condition
based on histogram intersection. In task 2, we also determined the selection ratios of highlighted
filters with top-1 probability of prediction results and random selection to determine whether the
proposed all-prediction algorithm was able to reflect participants’ preference. We also conducted
the Wilcoxon signed-rank test to determine whether there were significant differences. We adjusted
the results of p-values using the Benjamini–Hochberg procedure for multiple comparisons.

We also observed participants’ experiences through qualitative feedback after their tasks. Specif-
ically, we had participants respond to the following items: Q1) “I felt that the recommended filters
reflected my preference gradually.” Q2) “I felt that the recommended filters helped in my filter
selection?” Q3) “I felt that I could select filters according to my own preference?” and an open
question: Q4) “Which conditions did you like?” The participants filled out responded to Q1–3
based on a seven-point scale (strongly disagree = 1, neutral = 4, strongly agree = 7, and Q4: None
condition = 1, neutral = 4, Proposed condition = 7).

8.3 Results
Table 3 shows the quantitative results of our user study on the two tasks. The None and Proposed
conditions had similar results on average median selection times and filter comparisons. Since
the reference ratios of the None and Proposed conditions were also similar, we confirmed that
participants frequently selected filters with top-1 probability under both conditions. However, the
reference ratio of task 1 was significant, which means the participants prioritized the top-1 filters
under the Proposed condition. We also found significant selection ratios of the top-1 recommended
filters. This means that participants selected the top-1 recommended filters more frequently.
Figure 8 shows histograms of selection distributions under the None and Proposed conditions.

The histograms of each participant are similar under both conditions. We also computed histogram
intersection as a metric of distribution similarity. The average result of all participants was 0.78
(SD: 0.08). Therefore, we confirmed that the distributions of participants’ selections are similar
under both conditions.
In task 2, the average selection ratio of the top-1 recommended filters was 0.735 (SD: 0.15).

There is the significance for filters with the top-1 probability of prediction results and randomly
selected filters. These results indicate that the proposed all-prediction algorithm is able to reflect
participants’ preferences over random recommendations.
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Table 3. Results of our user study. * shows the statistical significance revealed by
the Wilcoxon signed-rank test (significance level: 𝑝 < 0.05)

Task 1 None condition Proposed condition p-value
selection times 9.34 (SD:0.36) 10.13 (SD:0.38) 0.1307
filter comparisons 5.19 (SD:1.84) 4.75 (SD:1.79) 0.0656
reference ratio of top-1 0.90 (SD:0.11) 0.93 (SD:0.10) 0.2721
first reference ratio of top-1 0.30 (SD:0.26) 0.40 (SD:0.27) 0.0302*
selection ratio of top-1 0.33 (SD:0.14) 0.475 (SD:0.13) 0.0028*

Task 2 Random filter Top-1 filter (Proposed)
Selection ratio 0.265 (SD:0.15) 0.735 (SD:0.15) 0.0026*

Fig. 8. Histogram comparison of None and Proposed conditions and histogram
intersection values for each participant. Distributions of participants’ selections
were similar under both conditions. Average histogram intersections was 0.78
(SD:0.08)

Figure 9 shows the results of qualitative feedback. We confirmed that the participants gave
positive feedback for the proposed all-prediction algorithm (Q1–3) and filter recommendations
(Q4).
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Fig. 9. Results of qualitative feedback. Participants answered questionnaire based
on seven-point scale (Q1–3: strongly disagree = 1, neutral = 4, strongly agree =
7, and Q4: None condition = 1, neutral = 4, Proposed condition = 7). participants
gave positive feedback on proposed all-prediction algorithm and filter recommen-
dations.

9 DISCUSSION
9.1 Summary of Algorithm Evaluations
Through our series of algorithm evaluations, we confirmed that the proposed algorithms for both All
and Limited Prediction settings performed better than baselines. In Evaluation 1, we compared our
all-prediction algorithm with traditional supervised learning and bandit algorithms. The proposed
algorithm outperformed the baselines in terms of top-1 accuracy and MMR as well as empirical
regrets. It was able to quickly find and track an optimal policy for a target user. In contrast, the
bandit algorithm could not detect the optimal policy in limited𝑇 time steps. The supervised learning
algorithm with all-in-one training data exhibited comparable top-3 accuracy due to selection bias
of image filters, i.e., top-3 popular filters gathered many selections, as shown in Figure 4. However,
this algorithm exhibited poor top-1 accuracy and MRR because the all-in-one data could not
reflect individual preferences. In contrast, by changing the reward value 𝑅𝑡𝑜𝑝3, the performance of
the proposed all-prediction algorithm could be tuned and outperformed the supervised learning
algorithm regarding top-3 accuracy.

In evaluation 2, we confirmed that increasing the number of policies in a set improved prediction
accuracy on an optimal policy and of the proposed all-prediction algorithm. As shown in Figures 4
and 8, user preferences of image filter selections were diverse, which resulted in different selection
distributions among users. In contrast, a set may cover the preference of a target user by using a
policy from another user with a similar preference if the set contains enough policies. The proposed
all-prediction algorithm was thus able to find an optimal policy with a reasonable performance.
The results of Evaluation 3 for the limited-prediction algorithm indicate that this algorithm

with the KL-UCB algorithm outperformed the competitive algorithms. Using the exponentially
weighted average of prediction results, our algorithm was able to construct a personalized model
using few policies from a set. The evaluation of processing time under various 𝑀 showed that
the prediction times of each policy affected to overall processing times rather than selecting 𝑀
policies. When𝑀 = 15, the overall processing time was around 150 milliseconds (6.67 predictions
per second). Although the processing time is acceptable for our image-filter-selection application,
15 or more prediction times may cause delay in response time on other interactive systems, which
can make users uncomfortable. We thus conclude that reducing prediction times using the proposed
limited-prediction algorithm is valuable for designing adaptive interactive systems.
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9.2 Potential Effectiveness of Presenting Recommendation from Our Algorithm
The results of our pilot user study indicate the potential effectiveness of our recommendation
interface with the proposed algorithms. We received positive feedback for the recommendations
from our algorithms. From Q1 and Q2, many participants felt that the recommendation reflected
their preference for image filters and helped in their selections. In Tasks 1 and 2, participants actively
selected top-1 filters recommended from our algorithms. This indicates that the participants were
able to rely on our recommendations for their image-filter selections.
We observed the potential of our algorithms to make user selection more efficient. In Task 1,

the participants frequently started to review a filter candidate with top-1 recommendations. The
participants also said they liked the Proposed condition (from Q4). We thus argue that the proposed
algorithms give participants cues for complex decision making regarding image-filter selection.
However, selection times and filter comparisons were similar under both conditions. It is necessary
to improve representation methods and recommendation accuracy.

We also argue that the recommendations from our algorithms were able to preserve participants’
preference for image-filter selections. All participants mentioned that they could select image filters
based on their preferences (from Q3). We also observed that selection histograms from both None
and Proposed conditions were similar for many participants, as shown in Figure 8. These facts also
suggest that our algorithms successfully create personalized models for participants that reflect
their personal preferences.

9.3 Limitations and Future Works
Prediction with large amount of policies. The main limitation of our study was the number of

policies used in our algorithm evaluations and the user study. Our algorithm evaluations showed
the advantages of the proposed algorithms using 300 image-filter selections from 16 participants.
The number of participants was too small to definitively evaluate the proposed algorithms. We
plan to evaluate our algorithms with a large number of policies in a set. However, it will be difficult
to access all policies in a time step for practical interactive systems. We assume that the proposed
algorithm for the Limited Prediction setting will be effective in such a scenario.

Theoretical Guarantees of Regret Bound. Previous studies on online learning (e.g., bandit algo-
rithms) have addressed the analysis of theoretical guarantees for regret bounds [4, 9, 15, 28, 34].
In contrast, our main focus was to empirically evaluate whether the proposed algorithms predict
context-dependent user selections and assist their selection process. Although the evaluation
showed the advantages of the proposed algorithms with our dataset, theoretical understanding is
important to guarantee their performance.

Other Applications. Important future work is to apply the proposed algorithms to other appli-
cations that require users to make complex context-dependent decision making. We applied the
proposed algorithms to an actual image-filter-selection application to evaluate their performance
and investigated the effectiveness of the recommendations. Although we believe this study is
valuable to show the effectiveness of the proposed algorithms, we will consider applying them to
other types of applications such as food delivery services.

10 CONCLUSION
We proposed online learning algorithms that predict user selections based on personal preferences
and given context information for assisting in complex context-dependent decision making. We
introduced the combination of supervised learning from a dataset of other user selections and
online learning with a set of pre-trained policies. We considered two types of the problem settings:
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1) an online learner can access all prediction results from a set of policies (All Prediction setting),
and 2) an online learner is allowed to access a limited number of predictions from a set (Limited
Prediction setting). The algorithm for the All Prediction setting selects a policy with the current
best weight for prediction then updates the weights of all policies based on user selection to quickly
find an optimal policy in each time step. The algorithm for the Limited Prediction setting selects a
limited number of policies from a set for combine prediction results then updates the weights and
parameters of the selected policies in each time step. The limited-prediction algorithm computes
the arm scores of policies based on bandit algorithms to address the exploration and exploitation
problem for quickly building reasonable combinations of policies.
We applied the proposed algorithms to an image-filter-selection application. In this scenario,

users were asked to select a suitable filter for a given image based on their preferences. This
application can present the top-3 recommendations of image filters from the proposed algorithms.
The algorithms sequentially learn target user preferences based on the features of the given images
and user filter selections.We built a dataset on the image filter application to evaluate our algorithms.
The evaluations showed that our algorithm for the All Prediction setting outperformed traditional
supervised learning and bandit algorithms and improved prediction accuracy as the number of
policies in a set increased. The evaluations also showed that our algorithm for the Limited Prediction
setting had better prediction accuracy than state-of-the-art algorithms for a similar problem setting
(e.g., multi-armed bandit with additional observations). We also conducted a pilot user study to
investigate the potential effectiveness of the recommendations based on the proposed algorithms.
The results indicate that our recommendations reflect target user preferences and give participants
cues to make satisfying filter selections.
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