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Abstract—Hands are used by drivers to perform primary and
secondary tasks in the car. Hence, the study of driver hands has
several potential applications, from studying driver behavior and
alertness analysis to infotainment and human-machine interaction
features. The problem is also relevant to other domains of robotics
and engineering which involve cooperation with humans. In order
to study this challenging computer vision and machine learning
task, our paper introduces an extensive, public, naturalistic video-
based hand detection dataset in the automotive environment.
The dataset highlights the challenges that may be observed in
naturalistic driving settings, from different background com-
plexities, illumination settings, users, and viewpoints. In each
frame, hand bounding boxes are provided, as well as left/right,
driver/passenger, and number of hands on the wheel annotations.
Comparison with an existing hand detection datasets highlights
the novel characteristics of the proposed dataset.

I. INTRODUCTION

The detection and tracking of human hands has been
studied extensively in the vision and learning community.
In more recent years, the field has seen growing interest
with the introduction of cheaper range sensors [1], [2], ego-
centric applications [3]–[6], and driver study [7]–[11]. Until
recently, the majority of studies have emphasized human-
machine interaction (HMI) applications and gesture analysis in
relatively constrained settings, as opposed to more naturalistic,
out of the lab, social, and “in the wild” settings. Higher level
semantic analysis of hand gestures would benefit from better
detection and tracking of hands, which is challenging due
to the tendency of the hand to deform and occlude itself.
The dataset proposed in this paper follows the more recent
trends of leaving the constrained, in-front-of-the-sensor lab
settings, and provides the full challenge of occlusion, hand-
hand and hand-object interaction, illumination variability, and
more. Specifically, we strive to create a hand detection dataset
that incorporates the conditions encountered in a naturalistic
driving setting.

In the domain of driving, several key motivations exist for
the vision-based study of human hands. First, in the interest
of the safety of a vehicle’s occupants and their surroundings,
our motivation to pursue the challenge of detecting vehicle
occupants’ hands is that successful detection will provide a
major indication of the driver’s level of attentiveness to the
road. Drivers who regularly engage in distracting secondary
tasks involving hands during vehicle operation, such as text

messaging or eating, are reportedly common [12]. Second,
driver hands provide a unique modality of understanding driver
behavior [13]. When maneuvering on a freeway or turning
in an intersection, driver hands provide information of the
driver’s style and experience level. Third, large scale naturalis-
tic driving studies could immensely benefit from automatic or
semi-automatic analysis of driver hands and secondary tasks.
Recently, the SHRP 2 Naturalistic Driving Study has been col-
lecting raw data from 3,100 drivers throughout their everyday
driving routines, which contain data looking into and out of the
vehicle using camera sensors [14]. The purpose of the study
is to understand the role of driver behavior in vehicular safety.
The study is advantageous because pre-crash conditions and
patterns in a driver’s behaviors may be examined in detail,
which may shine light on the role that driver behavior plays in
a crash, demonstrate how drivers use hands to regain control
of a vehicle, and provide valuable insight in the design of
autonomous driving systems. The SHRP 2 study provides a
dashboard view looking into the vehicle, which shows the
driver’s hands [15], thus demonstrating the direct applicability
of the SHRP 2 data to the task of automatic analysis of hand
positions and motion patterns in long-term video.

This paper presents the following contributions:

Dataset: As a benefit to the research community, we
assembled an annotated a video-based dataset for the task of
hand detection under challenging naturalistic driving settings.
We make this dataset accessible to the community as part of
the Vision for Intelligent Vehicles and Applications (VIVA)
challenge1. We provide a method for participating research
groups to publicly compare detection algorithms and results
on a readily available online framework.

Analysis: A benchmark algorithm based on boosting deci-
sion trees over color and shape descriptors [16] is tuned for
the settings of hand detection and is used for experimental
analysis. This paper demonstrates how a hand detector can
greatly benefit from employing deeper decision trees.

Metrics: The paper establishes suitable metrics and evalu-
ation procedures on the dataset. The metrics emphasize overall
precision-recall curve as well as performance at low false
positives rates.

1Dataset publicly available at http://cvrr.ucsd.edu/vivachallenge/
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Fig. 1: Challenges in the dataset. (a) Varying illumination conditions may cause false positives and missed detections. Sunlight
causes the detector to consider the bright spot on the steering wheel as a hand. Realistic driving scenarios are prone to volatile
illumination, and thus the inclusion of severe illumination settings in the hand detection dataset is vital. (b) Skin-colored non-hand
objects, such as faces, forearms, and car interiors, may cause false positives in hand detection when the detector relies heavily
on color information. Utilizing additional cues, such as context or motion cues, may make the detector more robust against
false positives due to skin-colored objects. (c) A detector may miss a hand if it is occluded by another object, self-occluded, or
otherwise not completely visible within the frame of the image. In this example, the passenger’s left hand is not detected due
to being partially out of the frame. (d) Introduction of different viewpoints may cause errors in detection because the perceived
size and shape of the hand as well as background variability. This is useful for evaluating detector generalization capacity.

II. CHALLENGES OF A NATURALISTIC DRIVING SETTING

A vision-based hand detection dataset must include the
challenges encountered in a naturalistic driving setting in order
to be fully representative of hands in a vehicle. Existing
hand analysis research often circumvents the issues that are
prevalent in realistic driving situations by constraining the hand
detection problem such as by limiting the search space [17]
or by fixing the hand and background colors [18]. A general
hand detection dataset currently exists [19], which occasionally
incorporates challenges that overlap with those found in a
naturalistic driving setting. However, the occurrences of these
challenges are uncommon in the general hand detection dataset
as the imagery of said dataset are hand-picked photographs
obtained via crowd-sourcing, while imagery found in a natural-
istic driving setting and in-vehicle camera system will typically
come from videos in a non-selective manner. Thus, when
analyzing hands within vehicles, we do not have the ability
to control the environment, to enforce an allowable range of
clothing colors upon the driver, or to select which images are
clear enough to analyze. Instead, the challenges that are often
avoided in the field of hand analysis must now be considered
in the context of a naturalistic driving setting.

This section outlines some of the challenges that exist in
a naturalistic driving setting that we strive to represent within
the VIVA hand detection dataset.

Illumination conditions: Varying illumination conditions
(Figure 1(a)) and overexposure often cause false positives
during detection [15].

Non-hand objects of similar color: Detectors that rely
heavily on color features [20] may result in many false
positives due to skin-colored non-hand objects, including faces,
forearms, clothing, and car interiors (Figure 1(b)). While
relying on color for detection may be beneficial in locating
potential hand locations, further techniques must be employed
to reject non-hand detections, such as a context detector [19].

Occlusion and truncation: Occlusion of hands by other
objects and self-occlusion are challenges in the hand detection
problem [21]. Figure 1(c) shows a passenger hand on the right
that is missed by a detector because the hand is only partially

visible. An improved detector must be able to locate hands
even when the hands are partly occluded or out of frame. The
necessity to detect occluded hands is important because driver
hands that are not clearly visible may actually be involved in
other activity, which identifies the driver’s distracted state.

Camera viewpoints: Varying camera viewpoints may con-
tribute to both false positives and false negatives due to
representations of the hand that are rarely seen from other
viewpoints. Changing the viewpoint may drastically change the
perceived size of the hand, the orientation of the hand, and the
level of occlusion of the hand. Figure 1(d) demonstrates both
a false negative and a false positive that occurs in the first-
person viewpoint. The hand is incompletely detected, and is
thus considered a miss, while the hazard light button is falsely
detected as a hand. An improved, generalized hand detector
should be able to detect hands regardless of the viewpoint.
While the camera viewpoint would typically be known if a
hand detection system were built into a vehicle, we create a
dataset with varied viewpoints with the intent to encourage the
generalizability of detector submissions.

III. DESCRIPTION OF THE DATASET

In this section, we describe the VIVA hand detection
dataset in detail, including the annotation format, sources of
imagery, and categorized counts of images.

A. Annotations

Placement of bounding boxes: Each hand present in a
given image is annotated with an axis-aligned bounding box.
Partially occluded hands have a bounding box that encom-
passes the entire hand including the occluded portions of the
hand. When a hand is partially out of frame, a bounding box
is drawn only around the portion of the hand within the frame.
Completely occluded hands and hands completely out of frame
have no bounding box. Each image in the training and test sets
has at least one annotated hand belonging to the driver and at
most four annotated hands belonging to the driver and a single
passenger. Figure 2 exemplifies typical annotated images from
the dataset.
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Fig. 2: Visualization of annotations for a given video. Passen-
ger hands are also annotated in the VIVA dataset as they may
influence the behavior of the driver or may provide a further
challenge in hand detection.

Format of ground truth: The format of the annotations
follows the format supported by Piotr’s Computer Vision MAT-
LAB Toolbox (PMT) [22]. Each bounding box is specified by
its top-left point, width, and height [x, y, w, h]. Additionally,
each bounding box is assigned to one of four classes depending
on whether the hand belongs to the driver or to a passenger and
whether the hand is the owner’s left or right hand. We note
that left-right hand information is useful for many potential
in-vehicle applications [23].

B. Sources of Imagery and Camera Positions

We collect and annotate data from various sources and
viewpoints with the intent to create a diverse and challenging
detection task.

The VIVA detection dataset is comprised of images gath-
ered primarily from videos recorded from our lab. Three lab
test-beds were used, labeled as LISA X, LISA Q, and LISA
A. The viewpoints in these are either from behind the driver
or top down from the rear view mirror. We also include
images from YouTube videos of drives to further diversify
the VIVA hand detection dataset. The majority of the selected
YouTube videos have similar viewpoints as those observed in
our testbeds imagery. The remaining YouTube imagery uses
unfixed cameras, such as head-mounted or handheld cameras.

Figure 3 shows the possible camera positions from view-
point 5 (top view). Handheld camera imagery in our dataset is
viewed in a position similar to viewpoint 3 or 4, but are not
classified as such because the camera position is not fixed in
these cases.

C. Temporally Preceding Frames

For each image in the VIVA detection dataset, we make
available up to three temporally preceding frames as is pro-
vided with the KITTI detection dataset [24]–[26]. The set
of temporally previous frames do not have bounding box
annotations and serves only to augment the detection data.
The temporally previous frames will be useful to detection
algorithms that utilize motion cues.

D. Annotation Statistics

In this section we present the counts of each image type
and each image source.

Figure 4(a) shows we have over 2000 annotated images
from each of our three testbed vehicles. To further diversify

Fig. 3: Camera positions indexed as in the dataset: 0 - handheld
(not shown), 1 - front left, 2 - front right, 3 - back, 4 - side,
5 - top (current view), 6 - first-person.

the dataset, we also include over 2000 images from YouTube
which use imagery in unknown vehicles.

Figure 4(b) presents the number of images provided for
each viewpoint. The distribution of imagery by viewpoint was
selected based on the availability of imagery and our endeavor
to create various levels of difficulty within the dataset. Imagery
from the back view is most common in our dataset, and we
intend for this viewpoint to be the easier portion of the dataset.
A subset of the test data consisting of only back view imagery
and larger instances (above 70 pixels in height) constitutes the
easier difficulty level in the hand detection challenge which
we denote as level-1 (L1) evaluation setting. Imagery from
other viewpoints and instances greater than 25 pixels in height
serve as the more difficult portion of our dataset, and correct
hand detection for these viewpoints is reserved for detection
algorithms that are capable of hand detection regardless of the
camera viewpoint. The level-2 (L2) setting includes imagery
from all viewpoints (including the images from the L1 setting)
and serves as the more difficult evaluation setting.

The majority of the dataset uses imagery in which both
of the driver’s hands are visible and neither of a passenger’s
hands are visible. We provide counts of images with a specified
total number of visible hands and a specified number of visible
driver and passenger hands in Figures 4(c)–(d).

The annotated bounding box dimensions for both the
training and test sets are plotted in Figure 5. The majority
of the hand sizes are similar between the training and test set,
though the amount of overlap decreases as the size of hands
increases. The test set uses some YouTube videos that are
of higher resolution than other imagery in our dataset, which
causes hands to appear larger in terms of pixels.

IV. EXPERIMENTAL EVALUATION

We use the Aggregate Channel Features (ACF) object
detector [16] from the PMT [22] to test the viability of the
VIVA hand detection dataset. This section describes evaluation
metrics, the ACF detector, and the results of the detector on
the hand detection set when we sweep through basic model
parameters. We use the precision-recall (PR) curve and the
area under the PR curve (AP) to evaluate how a parameter
affects performance. We also publicize the average recall (AR)
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Fig. 4: (a) Counts of images by vehicle type. Our three testbed vehicles are marked separately, but all vehicles from YouTube
videos are grouped together. (b) Counts of images by viewpoint. The number of images from the back viewpoint largely dominates
over the other viewpoints, and thus we consider the imagery from the back viewpoint as the easier of two levels of difficulty in
our dataset. (c) Counts of images by the total number of visible hands. The maximum number of visible hands is 4, and there is
always at least 1 hand visible in each image. (d) Counts of images by the number of visible driver and passenger hands. There
is always at least 1 driver hand, and there is usually no visible passenger hands.

Fig. 5: Annotation bounding box sizes for both the training and
test set. The sizes of the hands are largely similar between the
training and test set. The test set includes imagery in which
the hands appear much larger than the hands in the training
set.

metric for each detection submission, computed from the ROC
curve over 9 evenly sampled points in log space between 10

−2

and 10
0 false positives per image. The AR metric is suitable

for summarizing detection performance at lower false positive
rates. A detection is considered correct when it satisfies the
PASCAL criterion. That is, a detection is correct when the
proportion of overlap between the predicted bounding box and
the ground truth bounding box is greater than 0.5 [27].

A. ACF Detector Overview

The ACF detector utilizes 10 feature channels, a nor-
malized gradient magnitude channel, 6 gradient orientation
channels, and LUV color channels. Features are formed by
aggregating and smoothing the channels, and AdaBoost is
used to train decision trees based on these features. Object
detection is performed using a sliding-window approach. An
advantage of the ACF detector is that fast multiscale detection
is achieved using feature pyramids which are quickly derived
by computing features of octave-spaced scaled images and
using approximations for scales between octaves [28]. The
output of the ACF detector is a set of axis-aligned bounding
boxes along with a score proportional to the confidence of

detection for each box [16], [28].

The ACF detector is highly successful in pedestrian de-
tection [28], we thus treat the ACF detector as an effective
multiscale object detector to test the viability of the hand
detection dataset.

B. ACF Detector Results

To maintain simplicity in training an ACF detector to
evaluate the VIVA dataset, we only sweep through parameters
that govern the size of the model and the complexity of the
weak learners used in AdaBoost. We first select to use boosted
trees of depth 2, and we perform a grid search over 6 model
heights ranging from 25 to 75 pixels and 5 model aspect ratios
from 0.8 to 1.2. The ACF parameters we keep constant are the
number of classifiers in each of the four AdaBoost stages ([32,
128, 512, 2048]) and the non-maximal suppression threshold
at which lower-scoring bounding boxes are suppressed if they
overlap with other bounding boxes (0.2). All other ACF model
parameters are left as their default values. We retain the AP
obtained by each detector with depth 2 trees. We then repeat
this process using detectors with depth 4 trees. Figure 6 shows
the AP values obtained in both grid searches.

Using the model dimensions with the highest AP in the
depth 4 model size grid search (height of 65 pixels and aspect
ratio of 0.9), we sweep the tree depths to ensure that a tree
depth of 4 best suits this dataset. Figure 7 shows the PR curves
using detectors with tree depths of 2, 3, 4, and 5 on both the L1
and L2 evaluation settings. AP increases as tree depth increases
until a depth of 4. The detector with a tree depth of 5 performs
worse than the detector with a tree depth of 4, suggesting that a
detector with a tree depth higher than 4 suffers from overfitting.
Visualizing the models in Figure 8 provides further evidence
that the detector with a tree depth of 5 overfits to the training
data. In this visualization, warmer colors represent the larger
weights assigned to the corresponding locations within each
considered window, and the deeper colors in the depth 5 case
(far right) suggest that this detector may have overfit to the
training data.

Using the detector with model height 65 pixels, aspect
ratio 0.9, and tree depth 4, we compute the AP for both the
L1 and L2 settings: 70.09% for L1 and 60.06% for L2. We
also generate an ROC curve (Figure 9) to better visualize the
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performance of the detector in terms of its true positive rate
and number false positives per image. We also calculate AR
for the L1 and L2 settings: 53.84% for L1 and 40.42% for L2.

Our initial results are promising, but suffer from false
and missed detections. Typical high-scoring false positives
are shown in Figure 10. The top row contains hands, but
the poor fit of the bounding box prevents these detections
from being true positive detections. The false positives in the
bottom row suggest that our detector is heavily color-based
because faces and red objects are mistakenly detected as hands.
Further improvements to our detection system must be able to
reject these types of false positives and must form better-fitting
bounding boxes for each detection.

C. Cross Dataset Comparison

We performed a cross dataset comparison to assess whether
the images provided in the VIVA hand detection dataset may
be superseded by images provided in a general hand detection
dataset. We selected the diverse hand detection dataset created
by Mittal et al. [19] which includes annotated photographs
in indoor and outdoor settings. Cross dataset training and
testing resulted in AP of less than 10% in both cases, showing
the difficulty of the hand detection problem and the domain
differences among the datasets.

V. CONCLUDING REMARKS

Vision-based detection of vehicle occupants’ hands may
be indicative of the attentiveness and behavior of the driver.
This paper introduces the new vision-based detection dataset
for hands in a naturalistic driving setting. We assess the
feasibility of the VIVA dataset by training and testing object
detectors, and we perform a cross dataset comparison using a
general hand dataset to illustrate the uniqueness of the hand
detection problem in a naturalistic driving setting. Common
challenges for hand detection in naturalistic driving settings
include volatile illumination conditions, occlusion, non-hand
color similarity, and varying viewpoints. The VIVA dataset
incorporates instances of these challenges to create a detection
task representative of a naturalistic driving setting.

Our initial detector performed adequately on our dataset,
indicating that hand detection in our dataset is a possible yet
still a challenging task. Future goals include further tuning
of the ACF detector using its more complex parameters and
designing new detectors that may be better suited for the
hand detection task. Additionally, we will continue to update
the VIVA hand detection dataset to increase its diversity and
update the online evaluation method to better streamline the
submission process.
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