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We study techniques for monitoring and understanding real-world human activities, in particular of driv-
ers, from distributed vision sensors. Real-time and early prediction of maneuvers is emphasized, specif-
ically overtake and brake events. Study this particular domain is motivated by the fact that early
knowledge of driver behavior, in concert with the dynamics of the vehicle and surrounding agents, can
help to recognize dangerous situations. Furthermore, it can assist in developing effective warning and dri-
ver assistance systems. Multiple perspectives and modalities are captured and fused in order to achieve a
comprehensive representation of the scene. Temporal activities are learned from a multi-camera head
pose estimation module, hand and foot tracking, ego-vehicle parameters, lane and road geometry analy-
sis, and surround vehicle trajectories. The system is evaluated on a challenging dataset of naturalistic
driving in real-world settings.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Distributed camera and sensor networks are needed for study-
ing and monitoring agent activities in many domains of application
[1]. Algorithms that reason over the multiple perspectives and fuse
information have been developed with applications to outdoor or
indoor surveillance [2]. In this work, multiple real-time systems
are integrated in order to obtain temporal activity classification
of video from a vehicular platform. The problem is related to other
applications of video event recognition, as it requires a meaningful
representation of the scene. Specifically, event definition and
techniques for temporal representation, segmentation, and multi-
modal fusion will be studied. These will be done with an emphasis
on speed and reliability, which are necessary for the real-world,
challenging application of preventing car accidents and making
driving and roads safer. Furthermore, in the process of studying
the usability and discriminative power of each of different cues,
we gain insight into the underlying processes of driver behavior.

In 2012 alone, 33,561 people died in motor vehicle traffic
crashes in the United States [3]. A majority of such accidents
occurred due to an inappropriate maneuver or a distracted driver.
In this work, we propose a real-time holistic framework for
on-road analysis of driver behavior in naturalistic settings.
Knowledge of the surround and vehicle dynamics, as well as the
driver’s state will allow the development of more efficient driver
assistance systems. As a case study, we look into two specific
maneuvers in order to evaluate the proposed framework. First,
overtaking maneuvers will be studied. Lateral control maneuvers
such as overtaking and lane changing represent a significant por-
tion of the total accidents each year. Between 2004 and 2008,
336,000 such crashes occurred in the US [4]. Most of these
occurred on a straight road at daylight, and most of the contribu-
tion factors were driver related (i.e. due to distraction or inappro-
priate decision making). Second, we look at braking events, which
are associated with longitudinal control and their study also plays
a key role in preventing accidents. Early recognition of dangerous
events can aid in the development of effective warning systems.
In this work we emphasize that the system must be extremely
robust in order to: (1) engage only when it is needed by maintain-
ing a low rate of false alarm rate, (2) function at a high true positive
rate so that critical events, as rare as they may be, are not missed.
In order to understand what the driver intends to do, a wide range
of vision and vehicle sensors are employed to develop techniques
that can satisfy real-world requirements.

The requirement for robustness and real-time performance
motivates us to study feature representation as well as techniques
for recognition of temporal events. The study will focus on three
main components: the vehicle, the driver, and the surround. The
implications of this study are numerous. In addition to early
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warning systems, knowledge of the state of driver allows for cus-
tomization of the system to the driver’s needs, thereby mitigating
further distraction caused by the system and easing user accep-
tance. On the contrary, a system which is not aware of the driver
may cause annoyance. Additionally, under a dangerous situation
(e.g. overtaking without turning on the blinker), a warning could
be conveyed to other approaching vehicles. For instance the blinker
may be turned on automatically.

Our goal is defined as follows: The prediction and early detection
of overtaking and braking intent and maneuvers using driver, vehi-
cle, and surround information.

In the vehicle domain, a few hundred milliseconds could signify
an abnormal or dangerous event. To that end, we aim to model
every piece of information suggesting an upcoming maneuver. In
order detect head motion patterns associated with visual scanning
[5–7] under settings of occlusion and large head motion, a two
camera system for head tracking is employed. Subtle preparatory
motion is studied using two additional cameras monitoring hand
and foot motion. In addition to head, hand, and foot gesture anal-
ysis, sensors measuring vehicle parameters and surrounding vehi-
cles are employed (Fig. 1). A gray-scale camera is placed in order
to observe lane markings and road geometry, and a 360� color
camera on top of the vehicle allows for panoramic analysis.
Because visual challenges that are encountered in different sur-
veillance domains, such as large illumination changes and occlu-
sion, are common in our data, the action analysis modules
studied in this work are generalizable to other domains of applica-
tion as well.

We first perform a review of related literature in Section 2,
while making a case for holistic understanding of multi-sensory
fusion for the purpose of driver understanding and prediction.
Event definition and testbed setup will be discussed in Sections 8
and 4, respectively. The different signals and feature extraction
modules are detailed in Section 5. Two temporal modeling
approaches for maneuver representation and fusion will be dis-
cussed in Section 6, and the experimental evaluation (Section 8)
demonstrates analysis of different cues and modeling techniques
in terms of their predictive power.
Fig. 1. Distributed, synchronized network of sensors used in this study. A holistic represe
a few seconds before occurrence and the development of effective driver assistance sys
2. Related research studies

In our specific application, prediction involves recognition of
distinct temporal cues not found in the large, ‘normal’ driving class.
Related research may fall into three categories, which are roughly
aligned with different temporal segments of the maneuver: trajec-
tory estimation, inference, and intent prediction,with the first
being the most common. In trajectory estimation, the driver is usu-
ally not observed, but IMU, GPS [8] and maps [9], vehicle dynamics
[10], and surround sensors [11] play a role. These attempt to pre-
dict the trajectory of the vehicle given some observed evidence
(i.e. the beginning of significant lateral motion) and the probability
of crossing the lane marking [12,13]. A thorough recent review can
be found in [14].

In intent inference approaches, the human is brought in as an
additional cue, which may allow for earlier prediction. For
instance, Doshi et al. [15] uses head pose, among other cues, in
order to predict the probability that the vehicle will cross the lane
marking in a two second window before the actual event. Several
recent simulator studies have been performed using a variety of
cues for intent inference. In [16], driver intent to perform overtak-
ing was investigated using gaze information and an Artificial Neu-
ral Network (ANN). Vehicle dynamics, head, gaze, and upper body
tracking cues were used in [17] with a rule-based approach for the
analysis of driver intent to perform a variety of maneuvers. Even
EEG cues may be used, as was done in [18] for emergency brake
application prediction. Table 1 lists related research based on the
maneuver studied, the learning approach, and the cues used for
comparison with this work. Table 1 lists related studies done in
naturalistic driving settings, as in our experiments. These present
additional challenges to vision-based approaches.

Intent prediction corresponds to the earliest temporal predic-
tion, and is rare in literature. Generally, existing studies do not look
back in the prediction beyond 2–3 s before the event (e.g. the lane
marker crossing for lane change maneuver). Intent prediction
implies scene representation that may attempt to imitate human
perception of the scene in order to produce a prediction for an
intended maneuver. For instance, in [19] pre-attentive visual cues
ntation of the scene allows for prediction of driver maneuvers. Knowledge of events
tems could make roads safer and save lives.



Table 1
Overview of selected studies performed in real-world driving settings (i.e. as opposed to simulator settings) for maneuver analysis.

Study Maneuvers Inputsa Method

McCall and Trivedi [20] Brake E, He, R, F Relevance Vector Machine (RVM)
Doshi et al. [15] Lane-changeb E, He, L, R RVM
Tran et al. [21] Brake F Hidden Markov Model (HMM)
Cheng et al. [22] Turns E, He, Ha HMM
Pugeault and Bowden [19]c Brake, acceleration, clutch, steering V GIST + GentleBoost
Mori et al. [23] Awareness during lane-change R, Gaze Correlation index
Liebner et al. [10] Intersection turns and stop GPS Bayesian Network (BN)
Berndt and Dietmayer [24] Lane-change and turnsb E, L, GPS, Map HMM
This studyc Overtake, Brake E, He, Ha, L, R, F, V Latent-Dynamic Conditional Random Field (LDCRF)

and Multiple Kernel Learning (MKL)

a Input types: E = Ego-vehicle parameters, He = Head, Ha = Hand, L = Lane, R = Radar/lidar objects, F = Foot, and V = Visual cues not included in previous types, such as break
lights and pre-attentive cues.

b Defined lane-change at lane crossing.
c Explicitly models pre-intent cues.
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from a front camera are learned for maneuver prediction. An exam-
ple would be a brake light appearing in front of the ego-vehicle,
causing the driver to brake.

In our objective to preform early prediction, we study a wide
array of cues as shown in Table 1. In particular, we attempt to char-
acterize maneuvers completely from beginning to end using both
driver-based cues and surround-based cues. We point out that a
main contribution comes from analysis of a large number of
modalities combined, while other studies usually focused on a sub-
set of the signals in this work (Table 1). Furthermore, the detection
and tracking modules are all kept in real-time. Training and testing
of models for intention prediction, inference, and trajectory
estimation will be done. Furthermore, we study additional cues
(hand, foot, visual pre-attentive cues) which were little studied
in previous work. Studying driver, surround, and vehicle cues
allows for gaining insight into how these are related throughout
a maneuver (Fig. 2).

3. Event definition

Commonly, a lane change event or an overtake event (which
includes a lane-change) are defined to begin at the lane marker
crossing. On the contrary, in this work the beginning of an overtake
event is defined earlier when the lateral motion started. We note
that there are additional ways to define a maneuver such as an
overtake or a lane-change (see [7]), and that our event start defini-
tion occurs significantly earlier than in many of the related
research studies. For instance, techniques focusing on trajectory-
based prediction define lane-change at the lane marker crossing.
Fig. 2. Timeline of an example overtake maneuver. Our algorithm analyzes cues for
intent prediction, intent inference, and trajectory estimation towards the end of the
maneuver.
Nonetheless, as shown in (Fig. 2), the driver had the intent to
change lanes much earlier, even before any lane deviation
occurred. We wish to study how well can we observe such intent.
By annotating events at the beginning of the lateral motion follow-
ing the steering cue, the task of prediction becomes significantly
more challenging. Under such a definition, lane deviation and vehi-
cle dynamics are weak cues for prediction, while human-centered
cues play a bigger role. Some examples are cues for visual scan-
ning, as well as preparatory movements with foot and hands.

In addition to studying overtake maneuvers, which involve lat-
eral control of the vehicle, we study a longitudinal control maneu-
ver which is also essential in preventing accidents and monitoring
for driver assistance. These are events where the driver chose to
brake due to a situational need. While brakes are more easily
defined (by pedal engagement), they allow us to evaluate the abil-
ity of the framework to generalize to other maneuvers. Any brake
event (both harsh and weak) is kept in the data. This is done in
order to emphasize analysis of key elements in the scene which
cause drivers to brake.

4. Instrumented mobile testbed and dataset

A uniquely instrumented testbed vehicle is used in order to
holistically capture the dynamics of the scene: the vehicle dynam-
ics, a panoramic view of the surround, and the driver. Built on a
2011 Audi A8, the automotive testbed is outfitted with extensive
auxiliary sensing for the research and development of advanced
driver assistance technologies. Fig. 1 shows a visualization of the
sensor array, consisting of vision, radar, lidar, and vehicle (CAN)
data. The goal of the testbed buildup is to provide a near-panoramic
sensing field of view for experimental data capture. Currently, the
experimental testbed features robust computation in the form of
a dedicated PC for development, which taps all available data from
the on-board vehicle systems, excluding some of the camera sys-
tems which are synchronized using UDP/TCP protocols. Sensor data
from the radars and lidars are fused into a single object list, with
object tracking and re-identification handled by a sensor fusion
module developed by Audi. On our dataset, the sensors are synchro-
nized up to 22 ms (on average). The sensor list is as follows:

Looking into the vehicle:

� Two cameras for head pose tracking.
� One camera for hand detection and tracking.
� One camera for foot motion analysis.

Looking outside of the vehicle:

� Forward looking camera for lane tracking.



Fig. 3. An example overtake maneuver. Head cues are important for capturing visual scanning and observing intent. The output of the head pose tracker as the maneuver
evolves are shown using a 3D model. See also Fig. 4

(a) Head yaw in degrees during an overtake event
(t=0 at beginning of lateral motion).
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� Two lidar sensors, one forward and one facing backwards.
� Two radar sensors on either side of the vehicle.
� A Ladybug2 360� video camera (composed of an array of 6

individual rectilinear cameras) on top of the vehicle.

The sensors are integrated into the vehicle body or placed in
non-distracting regions to ensure minimal distraction while driv-
ing. Finally, information is captured from the CAN bus providing
13 measurements of the vehicle’s dynamic state and controls, such
as steering angle, throttle and brake, and vehicle’s yaw rate.

With this testbed, a dataset composed of three continuous
videos with three different subjects for a total of about 110 min
(over 165,000 video frames at 25 frames per second were used)
was collected. Each driver was requested to drive as they would
in naturalistic settings to a set of pre-determined set of destina-
tions. Training and testing is done using a 3-fold cross validation
over the different subjects, with two of the subjects used for train-
ing and the rest for testing. Overall, we randomly chose 3000
events of ‘normal’ driving with no brake or overtake events, 30
overtaking instances, and 87 brake events. Braking events may
be harsh or soft, as any initial engagement of the pedal is used.
5. Maneuver representation

In this section we detail the vision modules used in order to
extract useful signals for analysis of activities.
(b) Foot velocity during a braking event.

Fig. 4. Mean and standard deviation of signals from the head pose and foot motion
tracking modules during the two maneuvers studied in this paper.
5.1. Signals

Head: Head dynamics are an important cue in prediction. The
head differs from the other body parts since the head is used by
drivers for information retrieval from the environment. For
instance, head motion may precede an overtaking maneuver in
order to scan for other vehicles (see Fig. 3). On the other hand,
the foot and hand signals occur with the driver intention to operate
a controller in the vehicle.
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Multiple cameras for human activity analysis [25] and face
analysis [26] have been shown to reduce occlusion-related failures.
In [27], a multi-perspective framework increased the operational
range of monitoring head pose by mitigating failures under large
head turns. In our setup, one camera is mounted on the front wind-
shield near the A-pillar and another camera is mounted on the
front windshield near the rear-view mirror to minimize
intrusiveness.

First, head pose is estimated independently on each camera per-
spective using some of the least deformable facial landmarks (i.e.
eye corners, nose tip), which are detected using supervised descent
method [28], and their corresponding points on a 3D mean face
model [29]. The system runs at 50 Hz. It is important to note that
head pose estimation from each camera perspective is with respec-
tive to the camera coordinates. One-time calibration is performed
to transform head pose estimation from respective camera coordi-
nates to a common coordinate where a yaw rotation angle equal to,
less than and greater than 0� represent the driver looking forward,
rightward and leftward, respectively.

Second, head pose is tracked over a wide operational range in
the yaw rotation angle using both camera perspectives as shown
in Fig. 5. In order to handle camera selection and hand-off, multiple
techniques have been proposed in literature (a survey of different
methods can be found at [1]). We had success with using the yaw
as the camera hand-off cue. Assuming, without loss of generality,
that at time t ¼ 0 camera A is used to estimate head pose, then
the switch to using camera B happens from when yaw rotation
angle is greater than s. Similarly the switch from B to A happens
when yaw rotation angle is less than �s. If there is little to no spa-
tial overlap in camera selection (i.e. s ¼ 0), then noisy head pose
measurements at the threshold will result in switching between
the two camera perspectives needlessly. To avoid unnecessary
switching between cameras, a sufficiently overlapping region is
employed.

Hand: The hand signal will be used to study preparatory
motions before a maneuver is performed. Below, we specify the
hand detection and tracking module. Hand detection is a difficult
problem in computer vision, due to the hand’s tendency to occlude
itself, deform, and rotate, producing a large variability in its
appearance [30]. We use aggregate channel features [31] which
are fast to extract. Specifically, for each patch extracted from a
color image, gradient channels (six gradient orientation channels
Fig. 5. A two camera system overcomes challenges in head pose estimation and allow
conditions, and occlusion.
and normalized gradient magnitude) and color channels (CIE-LUV
color channels were experimentally validated to work best com-
pared to RGB and HSV) were extracted. 2438 instances of hands
were annotated, and an AdaBoost classifier with decision trees as
the weak classifiers is used for learning [32,33]. The hand detector
runs at 30 fps on a CPU. We noticed many of the false detections
occurring in the proximity of the actual hand (the arm, or multiple
detections around the hand), hence we used a non-maximal sup-
pression with a 0.2 threshold. Because of this, window size and
padding had a significant effect on the results (Fig. 6). In order to
differentiate the left from the right hand, we train a histogram of
oriented gradients (HOG) with a support vector machine (SVM)
detector. A Kalman filter is used for tracking.

Foot: One camera is used to observe the driver’s foot behavior
near the brake and throttle pedal, and an illuminator is also used
due to lack of lighting in the pedal region. While embedded pedal
sensors already exist to indicate when the driver is engaging any of
the pedals, vision-based foot behavior analysis has additional ben-
efits of providing foot movements before and after pedal press.
Such analysis can be used to predict a pedal press before it is reg-
istered by the pedal sensors.

An optical flow (iterative pyramidal Lucas–Kanade [34], run-
ning at 30 Hz) motion cue is employed to determine the location
of the foot and its velocity (see Fig. 7). Optical flow is sufficiently
robust for analyzing foot behavior due to little illumination
changes and the lack of other moving objects in the region. First,
optical flow vectors are computed over sparse interest points,
which are detected using Harris corner detection. Second, a major-
ity vote over the computed flow vectors reveals an approximate
location and magnitude of the global flow vector.

Optical flow based motion cues have been used in literature for
analyzing head [35] and foot [21] gestures. Tran et al. [21] showed
promising results where 74% of the pedal presses were correctly
predicted 133 ms before the actual pedal press.

Lidar/radar: The maneuvers we study correlate with surround-
ing events. For instance, a driver may brake because of a forward
vehicle slowing down or choose to overtake a vehicle in its proxim-
ity. Such cues are studied using an array of range sensors that track
vehicles in term of their position and relative velocity. The sensor-
fusion module, developed by Audi, tracks and re-identifies vehicles
across the lidar and radar systems in a consistent global frame of
reference. In this work we only consider trajectory information
for continuous tracking even under large head movements, varying illumination
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Fig. 6. Top: hand detection results with varying patch size and features; MAG – gradient magnitude, HOG – gradient orientation, and LUV color. Bottom: scatter plot of left (in
red) and right (in green) hand detection for the entire drive. A hand trajectory of reaching towards the signal before an overtake is shown (brighter is later in time). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Foot tracking using iterative pyramidal Lucas–Kanade optical flow. Majority vote produces location and velocity.
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(longitudinal and lateral position and velocity) of the forward
vehicle.

Lane: A front-observing gray-scale camera (see Fig. 1) is used for
lane marker detection and tracking using a built-in system. The
system can detect up to four lane boundaries. This includes the
ego-vehicle’s lanes and two adjacent lanes to those. The signals
we consider are the vehicle’s lateral deviation (position within
the lane) and lane curvature.

Vehicle: The dynamic state of the vehicle is measured using a
CAN bus, which supplies 13 parameters such as blinker state and
vehicle’s yaw rate. In understanding and predicting the maneuvers
in this work, we only steering wheel angle information (important
for analysis of overtake events), vehicle velocity, and brake and
throttle pedal information.

Surround visual: The 360� panoramic camera outputs the com-
posed view of six cameras. The view is used for annotation, offline
analysis, as well as extracting color and visual information from
the scene. The front vehicle, detected by the lidar sensor, is
projected to the panorama image using an offline calibration. The
projected vehicle box is padded, and a 50-bin histogram of the
LUV channels is used as a descriptor for each frame. We also
experimented with other scene descriptors, such as the GIST
descriptor as done in [19]. GIST was shown to benefit cues that
were not surround-observing (such as vehicle dynamics), yet the
overall contribution after fusion of all of the sensors was not
significant and so a detailed study of such features is left for future
work.
5.2. Temporal features

We compare two temporal features for each of the signals out-
putted by any one of the sensors described above at each time, f t .
First, we simply use the signal in a time window of size L,
Ft ¼ ðf t�Lþ1; . . . ; f tÞ ð1Þ

The time window in our experiments is fixed at three seconds.
These will be referred to as ‘raw’ features, as they simply involve a
concatenation of the time series in the window.

A second set of features studied involves quantization of the
signal into bins (states) in order to produce histograms (depicted
in Fig. 8). The temporal feature is a normalized count of the states
that occurred in the windowed signal. In this scheme, temporal
information is preserved by a split of the signal into k equal sub-
signals and histogram each of these sub-signals separately. We
experimented with different choices for k, and found k = 1, 2, 4 to
work well with no advantage in increasing the number of sub-
segments further. This was used in all of the experiments. The
number of bins was kept fixed at 20.
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6. Temporal modeling

A model for the signals extracted by the modules in Section 5
must address several challenges. First, signal structure must be
captured efficiently in order to produce a good modeling of
maneuvers. Second, the role of different modalities should be stud-
ied with an appropriate fusion technique. Two types of modeling
schemes are studied in this work, one using a Conditional Random
Field (CRF) [36] and the other using Multiple Kernel Learning
(MKL) [37]. The limitations and advantageous of these two
schemes will be discussed, with the overarching goal of under-
standing the evolution and role of different signals in maneuver
representation.

Given a sequence of observations from Eq. (1), x ¼
fFð1Þt ; . . . ; FðsÞt g, where s is the total number of signals, the goal is
to learn a mapping to a label space, Y, of different maneuver labels.
This can be done using a conditional random field.

Conditional random field: Temporal dynamics are often modeled
using a graphical model which reasons over the temporal structure
of the signal. This can be done by learning a generative model, such
as a Markov Model (MM) [22], or a discriminative model such as a
Conditional Random Field (CRF) [36]. Generally, CRF has been
shown to significantly outperform its generative counterpart, the
MM. Furthermore, CRF can be modified to better model latent
temporal structures, which is essential for our purposes.

The Hidden CRF (HCRF) [38] introduces hidden states that are
coupled with the observations for better modeling of parts in the
temporal structure of a signal with a particular label. A similar
mechanism is employed by the Latent-Dynamic CRF (LDCRF)
[36], with the advantage of also providing a segmentation solution
for a continuous data stream. Defining a latent conditional model
and assuming that each class label has a disjoint set of associated
hidden states h gives

Pðyjx; KÞ ¼
X

h

Pðyjh;x;KÞPðhjx;KÞ ¼
X

h:8hi2Hyi

Pðhjx; KÞ ð2Þ

where K is the set of model parameters and y is a label or a
sequence of labels. In a CRF with a simple chain assumption, this
joint distribution over h has an exponential form,

Pðhjx; KÞ ¼ expð
P

kKk � Tkðh; xÞÞP
h expð

P
kKk � Tkðh; xÞÞ

ð3Þ

We follow [36], where the function Tk is defined as a sum of
state (vertex) or binary transition (edge) feature functions,

Tkðh; xÞ ¼
Xm

i¼1

lkðhi�1;hi; x; iÞ ð4Þ

The model parameters are learned with gradient ascent over the
training data using the objective function,
Fig. 8. Two features used in this work: raw trajectory features outputte
LðKÞ ¼
Xn

i

log Pðyijxi;KÞ �
1

2r2 jjKjj
2 ð5Þ

where PðKÞ � expð 1
2r2 jjKjj2Þ. In inference, the most probable

sequence of labels is the one that maximizes the conditional model
(Eq. (2)). Marginalization over the hidden states is computed using
belief propagation.

With LDCRF, early-fusion is used for fusion of the temporal sig-
nal features. When considering the histogram features studied in
this work, each bin in the histogram is associated with an observa-
tion vector of size k (where k is illustrated in Fig. 8). In this case,
temporal structure is measured by the evolution of each bin over
time. Possibly due to the increase in dimensionality and the
already explicit modeling of temporal structure in the LDCRF
model, using raw features was shown to work as good or better
than the sub-segment histogram features.

Multiple kernel learning: A second approach for constructing a
maneuver model is motivated by the need for fusion of the large
number of incoming signals from a variety of modalities. Given a
set of training instances and signal channel cl (i.e. brake pedal
output), a kernel function is calculated for the signal, jcl

ðxi;xjÞ :

Rd � Rd ! R (d is the feature dimension and xi;xj are two data
points). This produces a set of s kernel matrices for the n data
points in the training set, fKcl 2 Rn � Rn; l ¼ 1; . . . ; sg, so that
Kcl

ij ¼ jcl
ðxi; xjÞ. s stands for the total number of outputs provided

by the modules in Section 5. In our implementation, Radial Basis
Function (RBF) kernels are derived for each of the signals using
jðxi;xjÞ ¼ expð�jjxi � xjjj=cÞ. The cost and spread parameters are
found for each signal separately using grid search.

The kernels are combined by learning a probability distribution
p ¼ ðp1; . . . ; psÞ, with pl 2 Rþ and pT 1 ¼ 1, such that the combina-
tion of kernel matrices,

KðpÞ ¼
Xs

l¼1

plKcl ð6Þ

is optimal. In this work, the weights are learned using stochastic
approximation [37]. LIBSVM [39] is used as the final classifier. The
histogram features were shown to work well with MKL, performing
better than simply using the raw temporal signal features [40].

7. Experimental setup

Several experiments are conducted in order to test the proposed
framework for recognition of intent and prediction of maneuvers.
As mentioned in Section 3, we experiment with two definitions
for the beginning of an overtake event. An overtake event may be
marked when the vehicle crossed the lane marking or when the
lateral movement began. These are referred to as overtake-late
and overtake-early, respectively. Normal driving is defined as
d by the detection and tracking, and histograms of sub-segments.
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events when the brake pedal was not engaged and no significant
lane deviation occurred, but the driver was simply keeping within
the lanes. A brake event is any event in which the brake pedal
became engaged. Furthermore, we do not require a minimum
speed for the events, so normal, brake, and overtake events may
occur at any speed. Brake events may be in any magnitude of pedal
press.

Initially, the proposed framework is evaluated by studying the
question of whether a driver is about to overtake of brake due to
a leading vehicle, as both are possible maneuvers. These experi-
ments provide analysis on the temporal features and modeling.
Once these initial experiments are complete, this allows us to
move further to more complicated scenarios. Below, we detail
the reference system to each experiment that will be performed
in the experimental evaluation (Section 8).

� Experiment 1a: Overtake-late events vs. brake events (over-
take-late/brake).

� Experiment 1b: Overtake-early events vs. brake events (over-
take-early/brake).

Next, we are concerned with how each of the above events is
characterized compared to normal driving.
� Experiment 2a: Overtake-late events vs. normal driving
events (overtake-late/normal).

� Experiment 2b: Overtake-early events vs. normal driving
events (overtake-early/normal).

Finally, we study the framework under a different maneuver,

� Experiment 3: Brake events vs. normal driving (brake/
normal).

8. Experimental evaluation

Temporal modeling: The first set of evaluations is concerned
with comparison among the choices for the temporal features
and temporal modeling. Each cue is first modeled independently
in order to study its predictive power. The results for LDCRF and
MKL under experiment 1a, overtake-late/brake are shown in
Fig. 9 for raw trajectory features. LDCRF demonstrates better pre-
dictive power using each modality independently when compared
to MKL. For instance, lane information provides better prediction at
d ¼ �2 (2 s before the event start definition) with the LDCRF
model. Similar conclusion holds for the head pose signal as well.
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Fig. 11. Measuring prediction by varying the time in seconds before an event, d. Top: MKL results. Bottom: LDCRF results. (a) Experiment 2a: overtake-late vs. normal (b)
Experiment 2b: overtake-early vs. normal (c) Experiment 3: brake vs. normal. Note how prediction of overtake-early events, which occur seconds before the beginning of an
overtake-late events, is more difficult.
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As LDCRF explicitly reasons over temporal structure in the signal,
these results are somewhat expected.

Temporal features and fusion: Fig. 9 also shows the results of
fusion of multiple modalities with one model learned over the
multiple types of signals. For clarity, we only show fusion of dri-
ver-based cues (head, hand, and foot) and surround cues (vehicle
parameters, lidar, and lane). MKL is shown to perform better, as
it is designed for fusion of multiple sources of signals. On the other
hand, with the increase in dimensionality, the LDCRF model is
shown to be limited. This is further studied in Fig. 10, where the
MKL scheme demonstrates further gains due to the temporal struc-
ture encoded by the histogram descriptor. This is not the case for
LDCRF, as it already explicitly reasons over temporal structure in
the data. Therefore, for the rest of the section, LDCRF is joined with
raw temporal features and the MKL with the temporal histogram
features. Next, the more challenging experiments of early predic-
tion are performed. As specific events are studied against a large
‘normal’ events dataset which includes naturalistic variation in
each cue, the prediction task becomes more challenging. Further-
more, prediction much earlier in the maneuver of overtake-early
events is also challenging.

The results are summarized in Fig. 11 for experiments 2 and 3,
where the entire set of signals described in Section 5 is used. For
each experiment, the predictive power of the learned model is
measured by making a prediction of a maneuver earlier in time,
at increments of one second. At d ¼ �2, a prediction is made two
seconds before the actual event definition. Fig. 11(b) demonstrates
the challenging task of prediction of overtake-early events, which
mostly involve recognition of scanning and preparatory movement
together with the surround cues. In this scenario of intent infer-
ence, lane deviation or steering angle info (which are strong cues
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for prediction in overtake-late events) are less informative. On the
other hand, prediction of two seconds before an overtake-late
maneuver is well defined in the feature space. Generally, the
MKL is shown better results due to better fusion of the multiple
signal sources, yet the prediction trends are consistent with the
two temporal modeling schemes.

Insights into the maneuvers: Next, we consider the trade-off and
value in sensor addition to an existing vehicle system. Suppose that
vehicle dynamics are provided, we quantify the benefit of adding a
surround sensor capturing system for the prediction compared to a
driver sensing system. The results are depicted in Fig. 12. Although
both systems provide an advantage, most gains for early prediction
come for prediction by observing driver related cues.

Fig. 13 shows the temporal evolution of cue importance using
the weight output p from the MKL framework. Effective kernels
will correspond to a heavier weight, and kernels with little dis-
criminative value will be associated a smaller weight. Fig. 13 dem-
onstrates how the entire maneuver can now be characterized in
terms of the dynamics and evolution of different cue over the
maneuver. For overtake events, driver-related cues of head, hand,
and foot are strongest around the time that the lateral motion
begins (t = 0) in Fig. 13(a). Surround cues include lane, lidar, and
visual surround cues. After the steering began, the lane deviation
cue becomes a strong indicator for the activity. Similarly, the tem-
poral evolution of the cues is shown for brake/normal event classi-
fication in Fig. 13(b). We see that driver cues (i.e. foot), and
surround cues (i.e. visual cues, lidar) are best for early prediction,
and a sharp increase in the kernel weight associated with vehicle
dynamics occurs around the time of the pedal press.

9. Concluding remarks

In this work, a surveillance application of driver assistance was
studied. Automotive driver assistance systems must perform under
time-critical constraints, where even tens of milliseconds are
essential. A holistic and comprehensive understanding of the dri-
ver’s intentions can help in gaining crucial time and save lives. Pre-
diction of human activities was studied using information fusion
from an array of sensors in order to fully capture the development
of complex temporal interdependencies in the scene. Evaluation
was performed on a rich and diverse naturalistic driving dataset
showing promising results for prediction of both overtaking and
braking maneuvers. The framework allowed the study of the differ-
ent types of signals over time in terms of predictive importance. In
the future, additional maneuver types, such as those performed
when approaching to and at intersections will be studied.
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