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Abstract— The research community has shown significant
improvements in both vision-based detection and tracking of
vehicles, working towards a high level understanding of on-road
maneuvers. Behaviors of surrounding vehicles in a highway
environment is found as an interesting starting point, of why this
dataset is introduced along with its challenges and evaluation
metrics. A vision-based multi-perspective dataset is presented,
containing a full panoramic view from a moving platform
driving on U.S. highways capturing 2704x1440 resolution im-
ages at 12 frames per second. The dataset serves multiple
purposes to be used as traditional detection and tracking,
together with tracking of vehicles across perspectives. Each of
the four perspectives have been annotated, resulting in more
than 4000 bounding boxes in order to evaluate and compare
novel methods.

Index Terms— Vehicle detection, vehicle tracking, multi-
perspective behavior analysis, autonomous driving.

I. INTRODUCTION

Detecting and tracking vehicles in full surroundings of a
vehicle are natural next steps given the improvements seen in
monocular perspectives. This allows for the study of on-road
behaviors [1], identifying behaviors [2], [3] and long-term
prediction [4] for both active and passive safety applications.
The motivation is clear: Bring down the number of fatal
accidents happening every day. To this end, the research
community has pushed forward the need for publicly avail-
able datasets and common benchmarks, as to strengthen the
scientific methodology for development and evaluation of
novel research.

Vision for Intelligent Vehicles & Applications (VIVA)
[9] is a vision-based challenge set up to serve two major
purposes. The first is to provide the research community with
naturalistic driving data from looking-inside and looking-
outside the vehicle, and thus to present the issues and
challenges from real-world driving scenarios. The second
purpose is to challenge the research community to high-
light problems and deficiencies in current state-of-the-art
approaches and simultaneously progress the development of
future algorithms. Current challenges in VIVA include hands
[10], traffic signs [11], [12], and traffic lights [13]. In this
paper we introduce multi-perspective vehicle detection and
tracking as a new part of the VIVA challenge, moving to-
wards understanding trajectory based behaviors surrounding
the ego-vehicle.
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Fig. 1. Vehicle instrumented with four cameras (top), ground truth
bounding boxes in the four perspectives (middle), and 3D ground truth
trajectories (bottom). The trajectories are marked with a start position X
and an end position O.

Monitoring surround vehicles is found using both passive
and active sensors. Active sensors include radar and lidar
to obtain 3D point clouds of nearby objects. The advantage
of using a passive vision-based approach is an easier inter-
pretation compared to 3D point clouds and a general lower
cost. The downside of a vision-based approach is the in-
creased computational complexity. Several benchmarks have
emerged for vision-based vehicle detection and tracking.
These fields together push towards a higher semantic scene
understanding, of which this dataset is aimed at. Related
datasets are summarized in Table I.

Detection datasets are among the most researched fields,
and also the first step towards a complete framework. Early
detection datasets such as the Pascal VOC Challenge [14]
used to detect cars at various viewpoints in static images
among 20 other object classes. The KITTI Vision Benchmark
Suite [8] dataset comprises a large collection of on-road data.

Many applications using video feeds require consecutive
detections such as driving on-road. The main interest so far
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TABLE I
RELATED VISION-BASED VEHICLE DATASETS.

Dataset Sensors
Detection
Tracking

Trajectory

Moving
Platform

Full
Surround Environment

TME [5] Two 1024× 768 front faced color
cameras at 20 FPS, IBEO 4 layer
laser scanner

3/7/7 3 7 Northern Italian Highways

PKU POSS [6] Ladybug3 at 1 FPS 3/7/7 3 3 Chinese Highways
Ford Campus vision
and lidar data set [7]

Ladybug3 at 8 FPS, lidars, IMU 7/7/7 3 3 U.S. Urban

KITTI [8] Front faced stereo camera captur-
ing 1392× 512 images at 10 FPS,
lidar, GPS

3/3/7 3 7 German Urban, Rural and Highway

LISA Trajectory Four GoPro cameras capturing
2704 × 1440 resolution images at
12 FPS

3/3/3 3 3 U.S. Highways

has been in a frontal perspective as found in the TME [5].
A full surround view is found in the PKU POSS dataset [6],
gathered by the omni-directional Ladybug3 camera at high-
ways, and later divided into four images of equal size for
detecting vehicles at different viewpoints. The Ford Campus
vision and lidar data set [7] also use the Ladybug3 but in rural
areas for the purpose of SLAM (Simultaneous Localization
and Mapping) thereby no vehicle annotations.

Tracking by detection can be described as associating
detections across frames often denoted by an identification
number. Most notably, is the KITTI dataset [8] with its
comprehensive annotations which not only allows object de-
tection but also tracking in a frontal perspective. Trajectories
allow for behavioral studies as seen in traffic applications
with a surveillance perspective as the one found in [15], using
both real and simulated data with the focus of clustering
similar trajectories.

This vision-based dataset consists of on-road full surround
images captured at high resolution at 12 FPS. These data
are suitable for both detection, tracking, and estimating
trajectories around the ego-vehicle introduced as multi-
perspective 3D tracking. The contributions of this dataset are
as follows: 1) Full surround using four independent cameras
with slightly overlapping perspectives; 2) Image data from
U.S. Highways recorded in high resolution of 2704 × 1440
at 12 frames per second; 3) More than 4000 bounding box
annotations with id, occlusion, and truncation tags.

II. DATASET AND CHALLENGES

A. Data Acquisition

The database is collected on U.S. Highways in southern
California over 2.5 hours of driving. The drives are divided
into sequences consisting of challenging behaviors found
around the ego-vehicle including e.g. overtaking, cut-ins, and
cut-outs. The data capturing vehicle is equipped with four
GoPro HERO3+ achieving a full surround view with limited
overlap as seen from Figure 1. Each camera is recording at
a resolution of 2704 × 1440 at 12 FPS, and post-processed
offline to synchronize and correct distortion. All four cameras
are calibrated to a common road plane using homographies

estimated from recordings at a parking lot, where the relative
world positions of points used for the estimation are known.

B. Ground Truth Annotation

The ground truth is obtained for each of the four perspec-
tives by manually annotating bounding boxes in the format
as seen in (1), where (x1, y1) denotes the top-left corner, and
(x2, y2) denotes the lower-right corner.

[frame, id, occlusion, truncation, x1, y1, x2, y2] (1)

Each vehicle is assigned an identification number, id, to
evaluate tracking. Note the id is consistent between perspec-
tives giving the option of multi-perspective tracking. The
occlusion and truncation tags are both divided into three
levels being No, Partial, and Heavy. Here, No equals 0%,
Partial includes vehicles up 50%, while Heavy covers 50%+
for both occlusion and truncation. Three levels are chosen
to simplify the annotation workload, while maintaining a
certain division for analysis purposes. Annotation examples
are shown in Fig. 2, and histograms of the data are shown in
Fig. 3. Note that almost 50% of the vehicles are present in
three perspectives, which motivates the challenge of observ-
ing vehicles as they move around the ego-vehicle. Though,
vehicles tend to transition between perspectives, it is also
clear that the front and rear perspectives dominate in the
number of visible vehicles.

The bounding box annotations allow for evaluation of both
detection and tracking. In order to evaluate 3D tracking,
we use the homographies to transform each ground truth
trajectory to the road plane. The middle of the bottom
of the bounding box, (x1 + 0.5(x2 − x1), y2), is used as
vehicle position. Using this position sets high demands to
the precision of the bounding box, especially the bottom.
This also means the trajectories will show the closest point
approximately, instead of the more intuitive center of the
surrounding vehicle. The road plane annotations have four
entries:

[frame, id, x, y] (2)

Examples of ground truth trajectories in the road plane are
shown in Fig. 1. The ground truth trajectories appear noisy
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Front Right Rear Left

Fig. 2. Sample images from one of the sequences in the dataset with overlaid ground truth annotations at six different time instances. The bounding
boxes are color coded by id and labled with PO, HO, PT, and HT denoting partial occlusion, heavy occlusion, partial truncation and heavy truncation,
respectively.
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Fig. 3. Histograms of bounding box annotation measures. Each column represents a perspective, and the rightmost column is the total. The rows are
from top to bottom: Bounding box aspect ratio, bounding box width and height in pixels, and the number of perspectives in which the visible vehicles are
present during the sequence.
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due to vibrations caused by the moving platform, which
are amplified by the road transformation. Note the applied
computer vision algorithms will be affected by the same
noise as the ground truth.

C. Evaluation Metrics

Well-established metrics exist for both detection and
single-perspective tracking of vehicles. Evaluating vehicle
trajectories is less commonly used, in this work referred to
as multi-perspective 3D tracking, and is explained in further
detail.

Vehicle Detection: The average precision (AP) is com-
monly used in vehicle detection, calculated as the area under
the precision-recall curve. For a ground truth bounding box
to be matched with a detected bounding box, an overlap
is defined as the intersection over union. Traditionally an
overlap of 0.5 is used, or 0.7 for higher precision which
is important in this work since homographies are utilized,
where a small deviation in the image plane can have a large
effect in road plane coordinates.

Vehicle tracking: The single-perspective multiple-object
tracking is evaluated using the CLEAR MOT metrics
(MOTA, MOTP) [16], together with metrics including frag-
mentations (Frag) and ID switches (IDS) [17], mostly tracked
(MT), and mostly lost (ML) [18]. A ground truth trajectory
is counted as mostly tracked if it is associated more than
80% of the time by definition. Likewise is a ground truth
trajectory accounted as a ML if associated in less than 20%
of the time. A fragmentation is added every time a ground
truth trajectory is split. An ID switch is added if a ground
truth trajectory is matched with another ID than the one that
is currently associated.

Multi-Perspective 3D tracking: The field of multi-
perspective 3D tracking is less explored without any common
metrics. The problem, however, is not so different from
tracking in single perspectives. For this reason, we propose to
use similar metrics in the road plane. Instead of association
between ground truth bounding boxes and tracked bounding
boxes, this will require association between points in the
road plane. To this end, we use a weighted euclidean distance
from ground truth trajectory points. This does however mean
that the cost of matching a candidate to ground truth is not
normalized (as the bounding box overlap definition), and
thus MOTP is not well-defined ([19] suggests to normalize
the distance with the matching threshold). The original
definition of MOTP says that it is the average dissimilarity
between all true positives and their corresponding ground
truth targets. With bounding box overlap a score as close
to 1.0 is ideal. Using euclidean distance changes the ideal
score to be as close to zero as possible, as it is now defined
as the average distance between true positives and their
corresponding ground truth targets. To reduce the confusion,
we refer to this score as multiple object tracking euclidean
precision (MOTEP):

MOTEP =

∑
t,i dt,i∑
t ct

(3)

Where ct denotes the number of matches in frame t, and dt,i
is the weighted euclidean distance between target i in frame
t and the corresponding ground truth target. A direct transfer
to the road plane domain would be a static distance allowed
from each ground truth trajectory point. However, as a nature
of inverse perspective mapping, small variations close to the
ego-vehicle will not be as severe as small variations further
away. We propose to make the matching criterion a function
of the x-distance from the ego-vehicle. A target is matched
to a ground truth target if it fulfills:

dt,i < a|x|+ b (4)

where |x| is the absolute x-coordinate of the ground truth
target, a is the gradual increase in allowed distance, and b
is the allowed distance at |x| = 0. From inspection of the
ground truth trajectories, we define a = 0.04 and b = 2. It
should however be noted that variations in the y-direction
are more likely to cause erroneous matches. For this reason,
we define the weighted euclidean distance as:

dt,i =

√
(gtx − trx)

2
+ 4 (gty − try)

2 (5)

where gt = [gtx gty]
T is the 2D ground truth position and

tr = [trx try]
T is the position of the target. Thus, distances

in the y-direction have a double weight.
Though, ID switches are counted, the metrics suggested

above do not encapsulate the importance of ID switches that
happen specifically in the transition between perspectives.
For this reason, we intend to include trajectory similarity
measures in the future, which could e.g. be longest common
subsequence (LCS).

III. EXPERIMENTAL EVALUATION

In this section we evaluate methods for each of the
tasks; detection, tracking, and 3D tracking. Vehicle detection
is performed for each of the four inputs of the cameras.
The detections in each perspective are used by a vehicle
tracker to associate detections between frames for each of
the four perspectives. The positions of the tracked vehicles
are transformed to the road surface, where the trajectories
are connected between perspectives. A detailed description
of the implementation is found in [20].

In this baseline a bounding box overlap criterion of 0.7 is
used for both detection and tracking. A partial truncation
level is used to evaluate up to 50% truncated vehicles.
Heavily truncated vehicles are ignored i.e. not included even
if it is correctly detected or not. Also, vehicles with a
height less than 35 pixels are ignored, since these are far
away from the ego vehicle (approximately 50 meters) and
therefore not of interest. Lastly, an ignore region is defined
to ignore oncoming traffic on the other side of the crash
barrier. Ignored vehicles are not included in the evaluation,
even if they are correctly detected/tracked or not.

Detection Evaluation: Both the DPM [21], [22], [23]
and the SubCat [24] are tested on the proposed dataset
for detection of vehicles in the four different perspectives.
All detectors are trained on the KITTI dataset [8], using

962



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

DPM     Front (AP 0.63)

SubCat Front (AP 0.94)

DPM     Rear  (AP 0.64)

SubCat Rear  (AP 0.90)

DPM     Right (AP 0.53)

SubCat Right (AP 0.58)

DPM     Left   (AP 0.65)

SubCat Left   (AP 0.62)

DPM     Total (AP 0.62)

SubCat Total (AP 0.87)

Fig. 4. Precision-Recall curve of DPM and SubCat detections with the average precision denoted in the label. Note the lower precisions in the side
perspectives. Evalutated with a minimum bounding box overlap 0.7 and up to 50% occlusion and 50% truncation level.

TABLE II
SINGLE PERSPECTIVE TRACKING RESULTS.

Methods MOTA↑ MOTP↑ IDS↓ Frag↓ MT↑ ML↓ Recall↑ Precision↑

Front
SubCat-MPMDP 0.82 0.83 1 1 0.80 0.00 0.83 1.00
DPM-MPMDP 0.71 0.78 0 0 0.80 0.10 0.81 0.89
Rear
SubCat-MPMDP 0.82 0.85 0 9 0.75 0.00 0.87 0.94
DPM-MPMDP 0.87 0.80 1 4 0.75 0.00 0.87 1.00
Left
SubCat-MPMDP 0.76 0.77 0 1 0.40 0.20 0.76 1.00
DPM-MPMDP 0.77 0.80 0 1 0.40 0.40 0.77 1.00
Right
SubCat-MPMDP 0.55 0.83 0 0 0.33 0.33 0.55 1.00
DPM-MPMDP 0.62 0.82 0 0 0.67 0.33 0.62 1.00

Total
SubCat-MPMDP 0.81 0.84 1 11 0.65 0.08 0.83 0.97
DPM-MPMDP 0.79 0.79 1 5 0.69 0.15 0.83 0.95

TABLE III
MULTI-PERSPECTIVE 3D TRACKING RESULTS.

Methods MOTA↑ MOTEP↓ IDS↓ Frag↓ MT↑ ML↓ Recall↑ Precision↑

SubCat-MPMDP-3D 0.64 1.23 5 93 0.46 0.15 0.79 0.85
DPM-MPMDP-3D 0.42 1.23 3 83 0.38 0.15 0.74 0.70

the same model for all four perspectives. The detectors are
evaluated using the average precision calculated as the area
under the precision-recall curve found in Fig. 4. SubCat is
found to outperform the DPM, especially in the front and rear
perspectives, with mixed results for the side perspectives.
This shows that the side views introduce new challenges
compared to the traditional front and rear perspective. DPM
employs parts, which implies more robustness to distortion
in appearance due to side views. SubCat learns many models,
so on normal settings it operates better on rigid or quasi-rigid
objects like vehicles.

Tracking Evaluation: The detections are used by a
modified version of the MDP tracker presented in [25] to
track the vehicles between frames. This modified tracker is
referred to as multi-perspective MDP (MPMDP) tracker. The
tracking evaluation is presented in Table II. As expected,

better detections of the SubCat detector also lead to better
scores in tracking, though the overall difference in score is
reduced by the tracker.

Multi-Perspective 3D Tracking Evaluation: Lastly, the
trajectories are transformed from image planes to road plane
and compared to ground truth. The multi-perspective 3D
tracking performance is listed in Table III. The choice of
detector proves to be of importance to the score, and is in
particular impacting the precision and thus also the MOTA.

IV. CONCLUDING REMARKS

This paper introduces a novel dataset that builds upon the
advances within monocular vision-based on-road detection
and tracking of vehicles, presenting multiple perspectives
for a full surround analysis. A total of four high resolution
cameras are used to capture the surroundings of a vehicle
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in a highway environment. Furthermore, ground truth anno-
tations enable evaluation of detection, tracking, and multi-
perspective 3D tracking. This means that methods designed
for observing vehicles can be evaluated in a full surround
looking framework, ultimately exposing and solving chal-
lenges introduced in a multi-perspective camera setup that
potentially could reinforce current sensor suites of intelligent
vehicles.
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